一次洗牌,无反馈的猜牌游戏的瞬间

IF 1 Q1 MATHEMATICS
Tipaluck Krityakierne, Poohrich Siriputcharoen, T. Thanatipanonda, Chaloemkiat Yapolha
{"title":"一次洗牌,无反馈的猜牌游戏的瞬间","authors":"Tipaluck Krityakierne, Poohrich Siriputcharoen, T. Thanatipanonda, Chaloemkiat Yapolha","doi":"10.47443/dml.2023.119","DOIUrl":null,"url":null,"abstract":"We consider card guessing with no feedback, a variant of the game previously studied by Ciucu in 1998. In this study, we derive an exact, closed-form formula for the asymptotic (in the number of cards, n ) expected number of correct guesses, as well as higher moments, for a one-time riffle shuffle game under the optimal strategy. The problem is tackled using two different approaches: one approach utilizes a fast generating function based on a recurrence relation to obtain numerical moments, while the other is the symbolic approach employing the method of indicators for finding expected counts. The results obtained contribute to the existing literature on card guessing with no feedback.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moments of the one-shuffle no-feedback card guessing game\",\"authors\":\"Tipaluck Krityakierne, Poohrich Siriputcharoen, T. Thanatipanonda, Chaloemkiat Yapolha\",\"doi\":\"10.47443/dml.2023.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider card guessing with no feedback, a variant of the game previously studied by Ciucu in 1998. In this study, we derive an exact, closed-form formula for the asymptotic (in the number of cards, n ) expected number of correct guesses, as well as higher moments, for a one-time riffle shuffle game under the optimal strategy. The problem is tackled using two different approaches: one approach utilizes a fast generating function based on a recurrence relation to obtain numerical moments, while the other is the symbolic approach employing the method of indicators for finding expected counts. The results obtained contribute to the existing literature on card guessing with no feedback.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是没有反馈的猜牌游戏,这是Ciucu在1998年研究过的一种游戏变体。在本研究中,我们导出了在最优策略下的一次性随机洗牌游戏的渐近(在牌数中,n)期望正确猜测次数以及更高时刻的精确,封闭形式公式。该问题采用两种不同的方法来解决:一种方法利用基于递归关系的快速生成函数来获得数值矩,而另一种方法是采用指标方法来寻找期望计数的符号方法。所得结果有助于现有的无反馈猜牌的文献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moments of the one-shuffle no-feedback card guessing game
We consider card guessing with no feedback, a variant of the game previously studied by Ciucu in 1998. In this study, we derive an exact, closed-form formula for the asymptotic (in the number of cards, n ) expected number of correct guesses, as well as higher moments, for a one-time riffle shuffle game under the optimal strategy. The problem is tackled using two different approaches: one approach utilizes a fast generating function based on a recurrence relation to obtain numerical moments, while the other is the symbolic approach employing the method of indicators for finding expected counts. The results obtained contribute to the existing literature on card guessing with no feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信