基于扩展b样条配置的奇摄动时滞抛物型微分方程参数一致收敛的数值格式

IF 1.3 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zerihun Ibrahim Hassen, G. Duressa
{"title":"基于扩展b样条配置的奇摄动时滞抛物型微分方程参数一致收敛的数值格式","authors":"Zerihun Ibrahim Hassen, G. Duressa","doi":"10.3389/fams.2023.1255672","DOIUrl":null,"url":null,"abstract":"This paper presents a parameter-uniform numerical method to solve the time dependent singularly perturbed delay parabolic convection-diffusion problems. The solution to these problems displays a parabolic boundary layer if the perturbation parameter approaches zero. The retarded argument of the delay term made to coincide with a mesh point and the resulting singularly perturbed delay parabolic convection-diffusion problem is approximated using the implicit Euler method in temporal direction and extended cubic B-spline collocation in spatial orientation by introducing artificial viscosity both on uniform mesh. The proposed method is shown to be parameter uniform convergent, unconditionally stable, and linear order of accuracy. Furthermore, the obtained numerical results agreed with the theoretical results.","PeriodicalId":36662,"journal":{"name":"Frontiers in Applied Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter-uniformly convergent numerical scheme for singularly perturbed delay parabolic differential equation via extended B-spline collocation\",\"authors\":\"Zerihun Ibrahim Hassen, G. Duressa\",\"doi\":\"10.3389/fams.2023.1255672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a parameter-uniform numerical method to solve the time dependent singularly perturbed delay parabolic convection-diffusion problems. The solution to these problems displays a parabolic boundary layer if the perturbation parameter approaches zero. The retarded argument of the delay term made to coincide with a mesh point and the resulting singularly perturbed delay parabolic convection-diffusion problem is approximated using the implicit Euler method in temporal direction and extended cubic B-spline collocation in spatial orientation by introducing artificial viscosity both on uniform mesh. The proposed method is shown to be parameter uniform convergent, unconditionally stable, and linear order of accuracy. Furthermore, the obtained numerical results agreed with the theoretical results.\",\"PeriodicalId\":36662,\"journal\":{\"name\":\"Frontiers in Applied Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fams.2023.1255672\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fams.2023.1255672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解时变奇摄动时滞抛物型对流扩散问题的参数一致数值方法。如果扰动参数接近零,则这些问题的解显示出抛物线边界层。在时间方向上使用隐式Euler方法,在空间方向上使用扩展的三次B样条配置,通过在均匀网格上引入人工粘性,来近似使延迟项与网格点重合的延迟自变量和由此产生的奇摄动延迟抛物型对流扩散问题。结果表明,该方法参数一致收敛,无条件稳定,精度为线性阶。数值计算结果与理论计算结果基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter-uniformly convergent numerical scheme for singularly perturbed delay parabolic differential equation via extended B-spline collocation
This paper presents a parameter-uniform numerical method to solve the time dependent singularly perturbed delay parabolic convection-diffusion problems. The solution to these problems displays a parabolic boundary layer if the perturbation parameter approaches zero. The retarded argument of the delay term made to coincide with a mesh point and the resulting singularly perturbed delay parabolic convection-diffusion problem is approximated using the implicit Euler method in temporal direction and extended cubic B-spline collocation in spatial orientation by introducing artificial viscosity both on uniform mesh. The proposed method is shown to be parameter uniform convergent, unconditionally stable, and linear order of accuracy. Furthermore, the obtained numerical results agreed with the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Applied Mathematics and Statistics
Frontiers in Applied Mathematics and Statistics Mathematics-Statistics and Probability
CiteScore
1.90
自引率
7.10%
发文量
117
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信