Alexandra Kapp, Saskia Nuñez von Voigt, Helena Mihaljevic, Florian Tschorsch
{"title":"面向具有用户级隐私的移动报告","authors":"Alexandra Kapp, Saskia Nuñez von Voigt, Helena Mihaljevic, Florian Tschorsch","doi":"10.1080/17489725.2022.2148008","DOIUrl":null,"url":null,"abstract":"ABSTRACT The importance of human mobility analyses is growing in both research and practice, especially as applications for urban planning and mobility rely on them. Aggregate statistics and visualizations play an essential role as building blocks of data explorations and summary reports, the latter being increasingly released to third parties such as municipal administrations or in the context of citizen participation. However, such explorations already pose a threat to privacy as they reveal potentially sensitive location information, and thus should not be shared without further privacy measures. There is a substantial gap between state-of-the-art research on privacy methods and their utilization in practice. We thus conceptualize a mobility report with differential privacy guarantees and implement it as open-source software to enable a privacy-preserving exploration of key aspects of mobility data in an easily accessible way. Moreover, we evaluate the benefits of limiting user contributions using three data sets relevant to research and practice. Our results show that even a strong limit on user contribution alters the original geospatial distribution only within a comparatively small range, while significantly reducing the error introduced by adding noise to achieve privacy guarantees.","PeriodicalId":44932,"journal":{"name":"Journal of Location Based Services","volume":"17 1","pages":"95 - 121"},"PeriodicalIF":1.2000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards mobility reports with user-level privacy\",\"authors\":\"Alexandra Kapp, Saskia Nuñez von Voigt, Helena Mihaljevic, Florian Tschorsch\",\"doi\":\"10.1080/17489725.2022.2148008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The importance of human mobility analyses is growing in both research and practice, especially as applications for urban planning and mobility rely on them. Aggregate statistics and visualizations play an essential role as building blocks of data explorations and summary reports, the latter being increasingly released to third parties such as municipal administrations or in the context of citizen participation. However, such explorations already pose a threat to privacy as they reveal potentially sensitive location information, and thus should not be shared without further privacy measures. There is a substantial gap between state-of-the-art research on privacy methods and their utilization in practice. We thus conceptualize a mobility report with differential privacy guarantees and implement it as open-source software to enable a privacy-preserving exploration of key aspects of mobility data in an easily accessible way. Moreover, we evaluate the benefits of limiting user contributions using three data sets relevant to research and practice. Our results show that even a strong limit on user contribution alters the original geospatial distribution only within a comparatively small range, while significantly reducing the error introduced by adding noise to achieve privacy guarantees.\",\"PeriodicalId\":44932,\"journal\":{\"name\":\"Journal of Location Based Services\",\"volume\":\"17 1\",\"pages\":\"95 - 121\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Location Based Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17489725.2022.2148008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Location Based Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17489725.2022.2148008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
ABSTRACT The importance of human mobility analyses is growing in both research and practice, especially as applications for urban planning and mobility rely on them. Aggregate statistics and visualizations play an essential role as building blocks of data explorations and summary reports, the latter being increasingly released to third parties such as municipal administrations or in the context of citizen participation. However, such explorations already pose a threat to privacy as they reveal potentially sensitive location information, and thus should not be shared without further privacy measures. There is a substantial gap between state-of-the-art research on privacy methods and their utilization in practice. We thus conceptualize a mobility report with differential privacy guarantees and implement it as open-source software to enable a privacy-preserving exploration of key aspects of mobility data in an easily accessible way. Moreover, we evaluate the benefits of limiting user contributions using three data sets relevant to research and practice. Our results show that even a strong limit on user contribution alters the original geospatial distribution only within a comparatively small range, while significantly reducing the error introduced by adding noise to achieve privacy guarantees.
期刊介绍:
The aim of this interdisciplinary and international journal is to provide a forum for the exchange of original ideas, techniques, designs and experiences in the rapidly growing field of location based services on networked mobile devices. It is intended to interest those who design, implement and deliver location based services in a wide range of contexts. Published research will span the field from location based computing and next-generation interfaces through telecom location architectures to business models and the social implications of this technology. The diversity of content echoes the extended nature of the chain of players required to make location based services a reality.