自由单基因群的新模型

Q3 Mathematics
Y. Zhuchok, G. Pilz
{"title":"自由单基因群的新模型","authors":"Y. Zhuchok, G. Pilz","doi":"10.30970/ms.59.1.12-19","DOIUrl":null,"url":null,"abstract":"It is well-known that one of open problems in the theory of Leibniz algebras is to find asuitable generalization of Lie’s third theorem which associates a (local) Lie group to any Liealgebra, real or complex. It turns out, this is related to finding an appropriate analogue of a Liegroup for Leibniz algebras. Using the notion of a digroup, Kinyon obtained a partial solution ofthis problem, namely, an analogue of Lie’s third theorem for the class of so-called split Leibnizalgebras. A digroup is a nonempty set equipped with two binary associative operations, aunary operation and a nullary operation satisfying additional axioms relating these operations.Digroups generalize groups and have close relationships with the dimonoids and dialgebras,the trioids and trialgebras, and other structures. Recently, G. Zhang and Y. Chen applied themethod of Grobner–Shirshov bases for dialgebras to construct the free digroup of an arbitraryrank, in particular, they considered a monogenic case separately. In this paper, we give a simplerand more convenient digroup model of the free monogenic digroup. We construct a new classof digroups which are based on commutative groups and show how the free monogenic groupcan be obtained from the free monogenic digroup by a suitable factorization.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new model of the free monogenic digroup\",\"authors\":\"Y. Zhuchok, G. Pilz\",\"doi\":\"10.30970/ms.59.1.12-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that one of open problems in the theory of Leibniz algebras is to find asuitable generalization of Lie’s third theorem which associates a (local) Lie group to any Liealgebra, real or complex. It turns out, this is related to finding an appropriate analogue of a Liegroup for Leibniz algebras. Using the notion of a digroup, Kinyon obtained a partial solution ofthis problem, namely, an analogue of Lie’s third theorem for the class of so-called split Leibnizalgebras. A digroup is a nonempty set equipped with two binary associative operations, aunary operation and a nullary operation satisfying additional axioms relating these operations.Digroups generalize groups and have close relationships with the dimonoids and dialgebras,the trioids and trialgebras, and other structures. Recently, G. Zhang and Y. Chen applied themethod of Grobner–Shirshov bases for dialgebras to construct the free digroup of an arbitraryrank, in particular, they considered a monogenic case separately. In this paper, we give a simplerand more convenient digroup model of the free monogenic digroup. We construct a new classof digroups which are based on commutative groups and show how the free monogenic groupcan be obtained from the free monogenic digroup by a suitable factorization.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.59.1.12-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.59.1.12-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,在莱布尼茨代数理论中,一个悬而未决的问题是如何找到李氏第三定理的适当推广,该定理将一个(局部)李群与任何实或复李代数联系起来。事实证明,这与为莱布尼茨代数找到合适的李群类似物有关。利用二群的概念,Kinyon得到了这个问题的一个部分解,即所谓的分裂莱布尼兹代数类的李氏第三定理的一个类比。双群是由两个二元结合运算、一元运算和满足与这些运算相关的附加公理的一元运算构成的非空集合。二群是群的泛化,与二似群、对偶代数、三似群、三代数以及其他结构有着密切的关系。最近,G. Zhang和Y. Chen应用对偶代数的Grobner-Shirshov基方法构造了任意秩的自由群,特别地,他们单独考虑了单基因的情况。本文给出了自由单基因双群的一个更简单、更方便的双群模型。我们构造了一类新的基于交换群的双群,并证明了如何通过适当的分解从自由单基因群中得到自由单基因群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new model of the free monogenic digroup
It is well-known that one of open problems in the theory of Leibniz algebras is to find asuitable generalization of Lie’s third theorem which associates a (local) Lie group to any Liealgebra, real or complex. It turns out, this is related to finding an appropriate analogue of a Liegroup for Leibniz algebras. Using the notion of a digroup, Kinyon obtained a partial solution ofthis problem, namely, an analogue of Lie’s third theorem for the class of so-called split Leibnizalgebras. A digroup is a nonempty set equipped with two binary associative operations, aunary operation and a nullary operation satisfying additional axioms relating these operations.Digroups generalize groups and have close relationships with the dimonoids and dialgebras,the trioids and trialgebras, and other structures. Recently, G. Zhang and Y. Chen applied themethod of Grobner–Shirshov bases for dialgebras to construct the free digroup of an arbitraryrank, in particular, they considered a monogenic case separately. In this paper, we give a simplerand more convenient digroup model of the free monogenic digroup. We construct a new classof digroups which are based on commutative groups and show how the free monogenic groupcan be obtained from the free monogenic digroup by a suitable factorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信