{"title":"293.2 K水+乳酸+乙醚三元体系LLE数据的测定、相关性及预测","authors":"S. Shekarsaraee, A. Naimi, Bahareh Bussary","doi":"10.22036/PCR.2020.250264.1840","DOIUrl":null,"url":null,"abstract":"In this study, tie-line points and solubility data were experimentally measured for the ternary mixture (water + lactic acid + diethyl ether) at T = 293.2 K and atmospheric pressure. UNIFAC calculations predicted that lactic acid and diethyl ether do not form an azeotrope. The mass fractions of organic and aqueous layers were determined by acid-base and the Karl Fisher titrations. Cloud point method verified that the LLE behavior of the studied system is Type-1. The reliability of the tie-line points was demonstrated by the Othmer–Tobias and Hand plots. Thermodynamic correlation of tie-line data was done by NRTL model and the obtained binary interaction parameters were tested after validation. The experimental and correlated data had very good accordance (rmsd = 0.88 %). Extraction quality of diethyl ether was investigated using the calculation of distribution coefficients and separation factors over the immiscibility area. Separation factors decreased from 1.93 to 1.13 when aqueous mass fraction of lactic acid increased from 0.070 to 0.305. However, distribution coefficient increased from 0.07 to 0.12 in the same region. The study shows that the extraction of lactic acid is possible in all investigated feeds at 293.2 K.","PeriodicalId":20084,"journal":{"name":"Physical Chemistry Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement, Correlation and Prediction of LLE Data for the Ternary System Water + Lactic Acid + Diethyl Ether at 293.2 K\",\"authors\":\"S. Shekarsaraee, A. Naimi, Bahareh Bussary\",\"doi\":\"10.22036/PCR.2020.250264.1840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, tie-line points and solubility data were experimentally measured for the ternary mixture (water + lactic acid + diethyl ether) at T = 293.2 K and atmospheric pressure. UNIFAC calculations predicted that lactic acid and diethyl ether do not form an azeotrope. The mass fractions of organic and aqueous layers were determined by acid-base and the Karl Fisher titrations. Cloud point method verified that the LLE behavior of the studied system is Type-1. The reliability of the tie-line points was demonstrated by the Othmer–Tobias and Hand plots. Thermodynamic correlation of tie-line data was done by NRTL model and the obtained binary interaction parameters were tested after validation. The experimental and correlated data had very good accordance (rmsd = 0.88 %). Extraction quality of diethyl ether was investigated using the calculation of distribution coefficients and separation factors over the immiscibility area. Separation factors decreased from 1.93 to 1.13 when aqueous mass fraction of lactic acid increased from 0.070 to 0.305. However, distribution coefficient increased from 0.07 to 0.12 in the same region. The study shows that the extraction of lactic acid is possible in all investigated feeds at 293.2 K.\",\"PeriodicalId\":20084,\"journal\":{\"name\":\"Physical Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22036/PCR.2020.250264.1840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22036/PCR.2020.250264.1840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Measurement, Correlation and Prediction of LLE Data for the Ternary System Water + Lactic Acid + Diethyl Ether at 293.2 K
In this study, tie-line points and solubility data were experimentally measured for the ternary mixture (water + lactic acid + diethyl ether) at T = 293.2 K and atmospheric pressure. UNIFAC calculations predicted that lactic acid and diethyl ether do not form an azeotrope. The mass fractions of organic and aqueous layers were determined by acid-base and the Karl Fisher titrations. Cloud point method verified that the LLE behavior of the studied system is Type-1. The reliability of the tie-line points was demonstrated by the Othmer–Tobias and Hand plots. Thermodynamic correlation of tie-line data was done by NRTL model and the obtained binary interaction parameters were tested after validation. The experimental and correlated data had very good accordance (rmsd = 0.88 %). Extraction quality of diethyl ether was investigated using the calculation of distribution coefficients and separation factors over the immiscibility area. Separation factors decreased from 1.93 to 1.13 when aqueous mass fraction of lactic acid increased from 0.070 to 0.305. However, distribution coefficient increased from 0.07 to 0.12 in the same region. The study shows that the extraction of lactic acid is possible in all investigated feeds at 293.2 K.
期刊介绍:
The motivation for this new journal is the tremendous increasing of useful articles in the field of Physical Chemistry and the related subjects in recent years, and the need of communication between Physical Chemists, Physicists and Biophysicists. We attempt to establish this fruitful communication and quick publication. High quality original papers in English dealing with experimental, theoretical and applied research related to physics and chemistry are welcomed. This journal accepts your report for publication as a regular article, review, and Letter. Review articles discussing specific areas of physical chemistry of current chemical or physical importance are also published. Subjects of Interest: Thermodynamics, Statistical Mechanics, Statistical Thermodynamics, Molecular Spectroscopy, Quantum Chemistry, Computational Chemistry, Physical Chemistry of Life Sciences, Surface Chemistry, Catalysis, Physical Chemistry of Electrochemistry, Kinetics, Nanochemistry and Nanophysics, Liquid Crystals, Ionic Liquid, Photochemistry, Experimental article of Physical chemistry. Mathematical Chemistry.