有限域中r-原元对$$(\alpha ,f(\alpha ))$$的存在性

IF 0.6 4区 工程技术 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hanglong Zhang, Xiwang Cao
{"title":"有限域中r-原元对$$(\\alpha ,f(\\alpha ))$$的存在性","authors":"Hanglong Zhang,&nbsp;Xiwang Cao","doi":"10.1007/s00200-022-00585-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>r</i> be a divisor of <span>\\(q-1.\\)</span> An element <span>\\(\\alpha \\in {\\mathbb {F}}_{q}\\)</span> is said to be <i>r</i>-primitive if ord<span>\\((\\alpha )=\\frac{q-1}{r}\\)</span>. In this paper, we discuss the existence of <i>r</i>-primitive pairs <span>\\((\\alpha , f(\\alpha ))\\)</span> where <span>\\(\\alpha \\in {\\mathbb {F}}_q\\)</span>, <i>f</i>(<i>x</i>) is a general rational function of degree sum <i>m</i> (degree sum is the sum of the degrees of numerator and denominator of <i>f</i>(<i>x</i>)) and the denominator of <i>f</i>(<i>x</i>) is square-free. Then we show that for any integer <span>\\(m&gt;0\\)</span>, there exists a positive constant <span>\\(B_{r,m}\\)</span> such that if <span>\\(q&gt;B_{r,m}\\)</span>, then such <i>r</i>-primitive pairs exist. In particular, we present a bound for <span>\\(B_{r,m}\\)</span> with <span>\\(r=2\\)</span> and <span>\\(m\\in \\{2,3,4,5,6\\}\\)</span>, and provide some conditions on the existence of 2-primitive pairs.</p></div>","PeriodicalId":50742,"journal":{"name":"Applicable Algebra in Engineering Communication and Computing","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence of r-primitive pairs \\\\((\\\\alpha ,f(\\\\alpha ))\\\\) in finite fields\",\"authors\":\"Hanglong Zhang,&nbsp;Xiwang Cao\",\"doi\":\"10.1007/s00200-022-00585-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>r</i> be a divisor of <span>\\\\(q-1.\\\\)</span> An element <span>\\\\(\\\\alpha \\\\in {\\\\mathbb {F}}_{q}\\\\)</span> is said to be <i>r</i>-primitive if ord<span>\\\\((\\\\alpha )=\\\\frac{q-1}{r}\\\\)</span>. In this paper, we discuss the existence of <i>r</i>-primitive pairs <span>\\\\((\\\\alpha , f(\\\\alpha ))\\\\)</span> where <span>\\\\(\\\\alpha \\\\in {\\\\mathbb {F}}_q\\\\)</span>, <i>f</i>(<i>x</i>) is a general rational function of degree sum <i>m</i> (degree sum is the sum of the degrees of numerator and denominator of <i>f</i>(<i>x</i>)) and the denominator of <i>f</i>(<i>x</i>) is square-free. Then we show that for any integer <span>\\\\(m&gt;0\\\\)</span>, there exists a positive constant <span>\\\\(B_{r,m}\\\\)</span> such that if <span>\\\\(q&gt;B_{r,m}\\\\)</span>, then such <i>r</i>-primitive pairs exist. In particular, we present a bound for <span>\\\\(B_{r,m}\\\\)</span> with <span>\\\\(r=2\\\\)</span> and <span>\\\\(m\\\\in \\\\{2,3,4,5,6\\\\}\\\\)</span>, and provide some conditions on the existence of 2-primitive pairs.</p></div>\",\"PeriodicalId\":50742,\"journal\":{\"name\":\"Applicable Algebra in Engineering Communication and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applicable Algebra in Engineering Communication and Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00200-022-00585-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Algebra in Engineering Communication and Computing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00200-022-00585-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

让 r 是 \(q-1.\) 的一个除数,如果 ord\((\alpha )=\frac{q-1}{r}\) 的元素 \(\alpha \in {\mathbb {F}}_{q}\) 称为 r-primitive 元素。在本文中,我们讨论了 r-primitive pairs \((\alpha , f(\alpha ))\) 的存在性,其中 \(\alpha \in {\mathbb {F}}_q\), f(x) 是一个度数总和为 m 的一般有理函数(度数总和是 f(x) 的分子和分母的度数之和),并且 f(x) 的分母是无平方的。然后我们证明,对于任意整数 \(m>0\),存在一个正常数 \(B_{r,m}\),使得如果 \(q>B_{r,m}\),则存在这样的 r-primitive 对。特别是,我们提出了一个关于 \(r=2\) 和 \(m\in \{2,3,4,5,6\}\)的 \(B_{r,m})的约束,并提供了一些关于 2-原素对存在的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence of r-primitive pairs \((\alpha ,f(\alpha ))\) in finite fields

Let r be a divisor of \(q-1.\) An element \(\alpha \in {\mathbb {F}}_{q}\) is said to be r-primitive if ord\((\alpha )=\frac{q-1}{r}\). In this paper, we discuss the existence of r-primitive pairs \((\alpha , f(\alpha ))\) where \(\alpha \in {\mathbb {F}}_q\), f(x) is a general rational function of degree sum m (degree sum is the sum of the degrees of numerator and denominator of f(x)) and the denominator of f(x) is square-free. Then we show that for any integer \(m>0\), there exists a positive constant \(B_{r,m}\) such that if \(q>B_{r,m}\), then such r-primitive pairs exist. In particular, we present a bound for \(B_{r,m}\) with \(r=2\) and \(m\in \{2,3,4,5,6\}\), and provide some conditions on the existence of 2-primitive pairs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applicable Algebra in Engineering Communication and Computing
Applicable Algebra in Engineering Communication and Computing 工程技术-计算机:跨学科应用
CiteScore
2.90
自引率
14.30%
发文量
48
审稿时长
>12 weeks
期刊介绍: Algebra is a common language for many scientific domains. In developing this language mathematicians prove theorems and design methods which demonstrate the applicability of algebra. Using this language scientists in many fields find algebra indispensable to create methods, techniques and tools to solve their specific problems. Applicable Algebra in Engineering, Communication and Computing will publish mathematically rigorous, original research papers reporting on algebraic methods and techniques relevant to all domains concerned with computers, intelligent systems and communications. Its scope includes, but is not limited to, vision, robotics, system design, fault tolerance and dependability of systems, VLSI technology, signal processing, signal theory, coding, error control techniques, cryptography, protocol specification, networks, software engineering, arithmetics, algorithms, complexity, computer algebra, programming languages, logic and functional programming, algebraic specification, term rewriting systems, theorem proving, graphics, modeling, knowledge engineering, expert systems, and artificial intelligence methodology. Purely theoretical papers will not primarily be sought, but papers dealing with problems in such domains as commutative or non-commutative algebra, group theory, field theory, or real algebraic geometry, which are of interest for applications in the above mentioned fields are relevant for this journal. On the practical side, technology and know-how transfer papers from engineering which either stimulate or illustrate research in applicable algebra are within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信