基于局部判别准则的区域主动轮廓分割模型

F. Zhao, H. Liang, X. L. Wu, D. Ding
{"title":"基于局部判别准则的区域主动轮廓分割模型","authors":"F. Zhao, H. Liang, X. L. Wu, D. Ding","doi":"10.14257/IJSIA.2017.11.7.06","DOIUrl":null,"url":null,"abstract":"This paper presents a novel region-based active contour model for image segmentation in a variational level set formulation. We define a local discriminant criterion on the basis of the global and local region-based active contour model. The objective function in this model is thereafter minimized via level set method. By introducing the local discriminant criterion to separate background and foreground in local regions, our model not only achieves accurate segmentation results, but also is robust to initialization. Extensive experiments are reported to demonstrate that our method holds higher segmentation accuracy and more initialization robustness, compared with the global region-based and local region-based methods. Experimental results for synthetic images and real medical images show desirable performances of our method.","PeriodicalId":46187,"journal":{"name":"International Journal of Security and Its Applications","volume":"11 1","pages":"73-86"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Region-based Active Contour Segmentation Model with Local Discriminant Criterion\",\"authors\":\"F. Zhao, H. Liang, X. L. Wu, D. Ding\",\"doi\":\"10.14257/IJSIA.2017.11.7.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel region-based active contour model for image segmentation in a variational level set formulation. We define a local discriminant criterion on the basis of the global and local region-based active contour model. The objective function in this model is thereafter minimized via level set method. By introducing the local discriminant criterion to separate background and foreground in local regions, our model not only achieves accurate segmentation results, but also is robust to initialization. Extensive experiments are reported to demonstrate that our method holds higher segmentation accuracy and more initialization robustness, compared with the global region-based and local region-based methods. Experimental results for synthetic images and real medical images show desirable performances of our method.\",\"PeriodicalId\":46187,\"journal\":{\"name\":\"International Journal of Security and Its Applications\",\"volume\":\"11 1\",\"pages\":\"73-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Security and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14257/IJSIA.2017.11.7.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Security and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJSIA.2017.11.7.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的基于区域的活动轮廓模型,用于变分水平集公式中的图像分割。我们在基于全局和局部区域的活动轮廓模型的基础上定义了一个局部判别准则。该模型中的目标函数随后通过水平集方法最小化。通过引入局部判别准则来分离局部区域中的背景和前景,我们的模型不仅获得了准确的分割结果,而且对初始化具有鲁棒性。大量实验表明,与基于全局区域和基于局部区域的方法相比,该方法具有更高的分割精度和更强的初始化鲁棒性。合成图像和真实医学图像的实验结果表明,我们的方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Region-based Active Contour Segmentation Model with Local Discriminant Criterion
This paper presents a novel region-based active contour model for image segmentation in a variational level set formulation. We define a local discriminant criterion on the basis of the global and local region-based active contour model. The objective function in this model is thereafter minimized via level set method. By introducing the local discriminant criterion to separate background and foreground in local regions, our model not only achieves accurate segmentation results, but also is robust to initialization. Extensive experiments are reported to demonstrate that our method holds higher segmentation accuracy and more initialization robustness, compared with the global region-based and local region-based methods. Experimental results for synthetic images and real medical images show desirable performances of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Security and Its Applications
International Journal of Security and Its Applications COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
0.00%
发文量
0
期刊介绍: IJSIA aims to facilitate and support research related to security technology and its applications. Our Journal provides a chance for academic and industry professionals to discuss recent progress in the area of security technology and its applications. Journal Topics: -Access Control -Ad Hoc & Sensor Network Security -Applied Cryptography -Authentication and Non-repudiation -Cryptographic Protocols -Denial of Service -E-Commerce Security -Identity and Trust Management -Information Hiding -Insider Threats and Countermeasures -Intrusion Detection & Prevention -Network & Wireless Security -Peer-to-Peer Security -Privacy and Anonymity -Secure installation, generation and operation -Security Analysis Methodologies -Security assurance -Security in Software Outsourcing -Security products or systems -Security technology -Systems and Data Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信