Galton最大树大小的极限定理 – 危急情况下的Watson森林

IF 0.3 Q4 MATHEMATICS, APPLIED
Elena V. Khvorostianskaia
{"title":"Galton最大树大小的极限定理 – 危急情况下的Watson森林","authors":"Elena V. Khvorostianskaia","doi":"10.1515/dma-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract We consider a critical Galton – Watson branching process starting with N particles; the number of offsprings is supposed to have the distribution pk=(k + 1)−τ−(k + 2)−τ, k=0, 1, 2, … Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with N trees and n non-root vertices as N, n → ∞, n/Nτ ⩾ C > 0.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"33 1","pages":"205 - 217"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems for the maximal tree size of a Galton – Watson forest in the critical case\",\"authors\":\"Elena V. Khvorostianskaia\",\"doi\":\"10.1515/dma-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider a critical Galton – Watson branching process starting with N particles; the number of offsprings is supposed to have the distribution pk=(k + 1)−τ−(k + 2)−τ, k=0, 1, 2, … Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with N trees and n non-root vertices as N, n → ∞, n/Nτ ⩾ C > 0.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"33 1\",\"pages\":\"205 - 217\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们认为一个关键的Galton – 从N粒子开始的Watson分支过程;子代的数量应该具有分布pk=(k + 1) -τ−(k + 2) -τ,k=0,1,2,…得到了相应Galton的最大树大小的极限分布 – 具有N棵树和N个非根顶点为N,N的Watson森林 → ∞, n/nτ⩾C > 0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems for the maximal tree size of a Galton – Watson forest in the critical case
Abstract We consider a critical Galton – Watson branching process starting with N particles; the number of offsprings is supposed to have the distribution pk=(k + 1)−τ−(k + 2)−τ, k=0, 1, 2, … Limit distributions of the maximal tree size are obtained for the corresponding Galton – Watson forest with N trees and n non-root vertices as N, n → ∞, n/Nτ ⩾ C > 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信