关于(k,r)-整数基根的分布

IF 0.5 Q3 MATHEMATICS
T. Srichan, Pinthira Tangsupphathawat
{"title":"关于(k,r)-整数基根的分布","authors":"T. Srichan, Pinthira Tangsupphathawat","doi":"10.52737/18291163-2019.11.12-1-12","DOIUrl":null,"url":null,"abstract":"Let $k$ and $r$ be fixed integers with $1<r<k$. A positive integer is called $r$-free if it is not divisible by the $r^{th}$ power of any prime. A positive integer $n$ is called a $(k,r)$-integer if $n$ is written in the form $a^kb$ where $b$ is an $r$-free integer. Let $p$ be an odd prime and let $x>1$ be a real number.\n\nIn this paper an asymptotic formula for the number of $(k,r)$-integers which are primitive roots modulo $p$ and do not exceed $x$ is obtained.","PeriodicalId":42323,"journal":{"name":"Armenian Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the distribution of primitive roots that are (k,r)-integers\",\"authors\":\"T. Srichan, Pinthira Tangsupphathawat\",\"doi\":\"10.52737/18291163-2019.11.12-1-12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $k$ and $r$ be fixed integers with $1<r<k$. A positive integer is called $r$-free if it is not divisible by the $r^{th}$ power of any prime. A positive integer $n$ is called a $(k,r)$-integer if $n$ is written in the form $a^kb$ where $b$ is an $r$-free integer. Let $p$ be an odd prime and let $x>1$ be a real number.\\n\\nIn this paper an asymptotic formula for the number of $(k,r)$-integers which are primitive roots modulo $p$ and do not exceed $x$ is obtained.\",\"PeriodicalId\":42323,\"journal\":{\"name\":\"Armenian Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Armenian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52737/18291163-2019.11.12-1-12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Armenian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52737/18291163-2019.11.12-1-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$k$和$r$为固定整数,其中$11$为实数。本文给出了$(k,r)$-整数以$p$为本原根模且不超过$x$的个数的渐近公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the distribution of primitive roots that are (k,r)-integers
Let $k$ and $r$ be fixed integers with $11$ be a real number. In this paper an asymptotic formula for the number of $(k,r)$-integers which are primitive roots modulo $p$ and do not exceed $x$ is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
13
审稿时长
48 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信