{"title":"关于某些特殊函数的一些最近不等式的改进","authors":"M. Akkouchi, M. Ighachane","doi":"10.2478/amsil-2019-0009","DOIUrl":null,"url":null,"abstract":"Abstract The aim of this paper is to give some refinements to several inequalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities via Hölder’s inequality, Scholars Journal of Research in Mathematics and Computer Science, 2 (2018), no. 2, 124–129] for the incomplete gamma function, Polygamma functions, Exponential integral function, Abramowitz function, Hurwitz-Lerch zeta function and for the normalizing constant of the generalized inverse Gaussian distribution and the Remainder of the Binet’s first formula for ln Γ(x).","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"33 1","pages":"1 - 20"},"PeriodicalIF":0.4000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Refinements of Some Recent Inequalities for Certain Special Functions\",\"authors\":\"M. Akkouchi, M. Ighachane\",\"doi\":\"10.2478/amsil-2019-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The aim of this paper is to give some refinements to several inequalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities via Hölder’s inequality, Scholars Journal of Research in Mathematics and Computer Science, 2 (2018), no. 2, 124–129] for the incomplete gamma function, Polygamma functions, Exponential integral function, Abramowitz function, Hurwitz-Lerch zeta function and for the normalizing constant of the generalized inverse Gaussian distribution and the Remainder of the Binet’s first formula for ln Γ(x).\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"33 1\",\"pages\":\"1 - 20\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2019-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2019-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Refinements of Some Recent Inequalities for Certain Special Functions
Abstract The aim of this paper is to give some refinements to several inequalities, recently etablished, by P.K. Bhandari and S.K. Bissu in [Inequalities via Hölder’s inequality, Scholars Journal of Research in Mathematics and Computer Science, 2 (2018), no. 2, 124–129] for the incomplete gamma function, Polygamma functions, Exponential integral function, Abramowitz function, Hurwitz-Lerch zeta function and for the normalizing constant of the generalized inverse Gaussian distribution and the Remainder of the Binet’s first formula for ln Γ(x).