{"title":"具有改性 GO 环境友好涂层功能的先进聚(苯胺-氨基水杨酸)纳米纤维在钢铁表面的耐水性和长期活性防腐性能","authors":"Meng Wang, Fengjuan Xiao, Longfei Kong, Guyu yin, Changbiao Ni, Xuefei Zhang, Cheng Qian, Lu Yan, Mengya Li, Jun Li, Kaixi Zhou","doi":"10.1007/s11998-021-00553-2","DOIUrl":null,"url":null,"abstract":"<div><p>An advanced long-term active corrosion protection coating for carbon steel was proposed using poly(aniline-aminosalicylic acid) nanofiber (PACA-f) covalently linked with cetyltrimethyl ammonium bromide (CTAB)-modified graphene oxide (CTGO). The proton-doped PACA-f functionalized CTGO (PACA-f/CTGO) exhibits excellent hydrophobicity and outstanding water resistance in waterborne epoxy polymer (WEP) coatings and better compatibility with WEP due to the formation of organic–inorganic networks. PACA-f/CTGO composite coating has a self-repairing function and shows superior corrosion resistance on Q235 steel. The surface-corrosion inhibition of PACA-f/CTGO on steel was investigated by molecular dynamics simulation(MD) which confirmed the chemical adsorption of the PACA-f/CTGO on the steel surface. The excellent water resistance and anticorrosion property of PACA-f/CTGO are ascribed to the high hydrophobicity of the hybrid coatings, the formation of intelligent passivation layer after the corrosive medium invading, and the barrier performance of CTGO.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced poly(aniline-aminosalicylic acid) nanofiber functionalized with modified GO environment friendly coatings on steel surfaces with water resistance and long-term active anticorrosion performance\",\"authors\":\"Meng Wang, Fengjuan Xiao, Longfei Kong, Guyu yin, Changbiao Ni, Xuefei Zhang, Cheng Qian, Lu Yan, Mengya Li, Jun Li, Kaixi Zhou\",\"doi\":\"10.1007/s11998-021-00553-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An advanced long-term active corrosion protection coating for carbon steel was proposed using poly(aniline-aminosalicylic acid) nanofiber (PACA-f) covalently linked with cetyltrimethyl ammonium bromide (CTAB)-modified graphene oxide (CTGO). The proton-doped PACA-f functionalized CTGO (PACA-f/CTGO) exhibits excellent hydrophobicity and outstanding water resistance in waterborne epoxy polymer (WEP) coatings and better compatibility with WEP due to the formation of organic–inorganic networks. PACA-f/CTGO composite coating has a self-repairing function and shows superior corrosion resistance on Q235 steel. The surface-corrosion inhibition of PACA-f/CTGO on steel was investigated by molecular dynamics simulation(MD) which confirmed the chemical adsorption of the PACA-f/CTGO on the steel surface. The excellent water resistance and anticorrosion property of PACA-f/CTGO are ascribed to the high hydrophobicity of the hybrid coatings, the formation of intelligent passivation layer after the corrosive medium invading, and the barrier performance of CTGO.</p></div>\",\"PeriodicalId\":48804,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-021-00553-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-021-00553-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Advanced poly(aniline-aminosalicylic acid) nanofiber functionalized with modified GO environment friendly coatings on steel surfaces with water resistance and long-term active anticorrosion performance
An advanced long-term active corrosion protection coating for carbon steel was proposed using poly(aniline-aminosalicylic acid) nanofiber (PACA-f) covalently linked with cetyltrimethyl ammonium bromide (CTAB)-modified graphene oxide (CTGO). The proton-doped PACA-f functionalized CTGO (PACA-f/CTGO) exhibits excellent hydrophobicity and outstanding water resistance in waterborne epoxy polymer (WEP) coatings and better compatibility with WEP due to the formation of organic–inorganic networks. PACA-f/CTGO composite coating has a self-repairing function and shows superior corrosion resistance on Q235 steel. The surface-corrosion inhibition of PACA-f/CTGO on steel was investigated by molecular dynamics simulation(MD) which confirmed the chemical adsorption of the PACA-f/CTGO on the steel surface. The excellent water resistance and anticorrosion property of PACA-f/CTGO are ascribed to the high hydrophobicity of the hybrid coatings, the formation of intelligent passivation layer after the corrosive medium invading, and the barrier performance of CTGO.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.