完全图和路径上的最优t-rub

IF 1 Q1 MATHEMATICS
Nándor Sieben
{"title":"完全图和路径上的最优t-rub","authors":"Nándor Sieben","doi":"10.47443/dml.2023.089","DOIUrl":null,"url":null,"abstract":"Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t -reachable if at least t pebbles can be moved to the vertex using rubbling moves. The optimal t -rubbling number of a graph is the minimum number of pebbles in a pebble distribution that makes every vertex t -reachable. The optimal t -rubbling numbers of complete graphs and paths are determined.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal t-rubbling on complete graphs and paths\",\"authors\":\"Nándor Sieben\",\"doi\":\"10.47443/dml.2023.089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t -reachable if at least t pebbles can be moved to the vertex using rubbling moves. The optimal t -rubbling number of a graph is the minimum number of pebbles in a pebble distribution that makes every vertex t -reachable. The optimal t -rubbling numbers of complete graphs and paths are determined.\",\"PeriodicalId\":36023,\"journal\":{\"name\":\"Discrete Mathematics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47443/dml.2023.089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定图形顶点上的鹅卵石分布,一个鹅卵石移动在一个顶点上放置一个鹅卵石,并在两个不一定不同的相邻顶点上各移除一个鹅卵石。一颗鹅卵石就是运输成本。如果至少有t个小石子可以被移动到一个顶点,那么这个顶点就是t可达的。图的最优t块数是使每个顶点t可达的卵石分布中的最小卵石数。确定了完全图和路径的最优t块数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal t-rubbling on complete graphs and paths
Given a distribution of pebbles on the vertices of a graph, a rubbling move places one pebble at a vertex and removes a pebble each at two not necessarily distinct adjacent vertices. One pebble is the cost of transportation. A vertex is t -reachable if at least t pebbles can be moved to the vertex using rubbling moves. The optimal t -rubbling number of a graph is the minimum number of pebbles in a pebble distribution that makes every vertex t -reachable. The optimal t -rubbling numbers of complete graphs and paths are determined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信