子度量空间上的概率

IF 0.4 Q4 MATHEMATICS
Adam Jakubowski
{"title":"子度量空间上的概率","authors":"Adam Jakubowski","doi":"10.2478/amsil-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract A submetric space is a topological space with continuous metrics, generating a metric topology weaker than the original one (e.g. a separable Hilbert space with the weak topology). We demonstrate that on submetric spaces there exists a theory of convergence in probability, in law etc. equally effective as the Probability Theory on metric spaces. In the theory on submetric spaces the central role is played by a version of the Skorokhod almost sure representation, proved by the author some 25 years ago and in 2010 rediscovered by specialists in stochastic partial differential equations in the form of “stochastic compactness method”.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probability on Submetric Spaces\",\"authors\":\"Adam Jakubowski\",\"doi\":\"10.2478/amsil-2023-0012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A submetric space is a topological space with continuous metrics, generating a metric topology weaker than the original one (e.g. a separable Hilbert space with the weak topology). We demonstrate that on submetric spaces there exists a theory of convergence in probability, in law etc. equally effective as the Probability Theory on metric spaces. In the theory on submetric spaces the central role is played by a version of the Skorokhod almost sure representation, proved by the author some 25 years ago and in 2010 rediscovered by specialists in stochastic partial differential equations in the form of “stochastic compactness method”.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2023-0012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2023-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

子度量空间是一个具有连续度量的拓扑空间,它产生一个比原度量拓扑弱的度量拓扑(如具有弱拓扑的可分Hilbert空间)。我们证明了在子度量空间上存在与度量空间上的概率论同样有效的概率、律等收敛理论。在亚度量空间理论中,中心作用是由Skorokhod几乎确定表示的一个版本发挥作用,该版本由作者在大约25年前证明,并在2010年被随机偏微分方程专家以“随机紧性方法”的形式重新发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probability on Submetric Spaces
Abstract A submetric space is a topological space with continuous metrics, generating a metric topology weaker than the original one (e.g. a separable Hilbert space with the weak topology). We demonstrate that on submetric spaces there exists a theory of convergence in probability, in law etc. equally effective as the Probability Theory on metric spaces. In the theory on submetric spaces the central role is played by a version of the Skorokhod almost sure representation, proved by the author some 25 years ago and in 2010 rediscovered by specialists in stochastic partial differential equations in the form of “stochastic compactness method”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信