{"title":"承认η-Ricci孤子的三维sasaki流形","authors":"D. Kar, P. Majhi","doi":"10.31926/but.mif.2019.61.12.2.11","DOIUrl":null,"url":null,"abstract":"In this paper we characterize the three dimensional Sasakian manifolds admitting η-almost Ricci solitons. After the introduction, in section 2, we study three dimensional Sasakian manifolds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satisfying the curvature property R.Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show that the necessary and suficient condition for a Sasakian manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections 5 and 6, we study projectively at and concircularly at Sasakian manifold of dimension 3 respectively and find the type of an η-Ricci soliton on such manifold. The next section is devoted to the study of such a manifold admitting η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three dimensional Sasakian manifolds admitting η-Ricci solitons\",\"authors\":\"D. Kar, P. Majhi\",\"doi\":\"10.31926/but.mif.2019.61.12.2.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize the three dimensional Sasakian manifolds admitting η-almost Ricci solitons. After the introduction, in section 2, we study three dimensional Sasakian manifolds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satisfying the curvature property R.Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show that the necessary and suficient condition for a Sasakian manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections 5 and 6, we study projectively at and concircularly at Sasakian manifold of dimension 3 respectively and find the type of an η-Ricci soliton on such manifold. The next section is devoted to the study of such a manifold admitting η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2019.61.12.2.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2019.61.12.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Three dimensional Sasakian manifolds admitting η-Ricci solitons
In this paper we characterize the three dimensional Sasakian manifolds admitting η-almost Ricci solitons. After the introduction, in section 2, we study three dimensional Sasakian manifolds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satisfying the curvature property R.Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show that the necessary and suficient condition for a Sasakian manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections 5 and 6, we study projectively at and concircularly at Sasakian manifold of dimension 3 respectively and find the type of an η-Ricci soliton on such manifold. The next section is devoted to the study of such a manifold admitting η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.