承认η-Ricci孤子的三维sasaki流形

Q4 Mathematics
D. Kar, P. Majhi
{"title":"承认η-Ricci孤子的三维sasaki流形","authors":"D. Kar, P. Majhi","doi":"10.31926/but.mif.2019.61.12.2.11","DOIUrl":null,"url":null,"abstract":"In this paper we characterize the three dimensional Sasakian manifolds admitting η-almost Ricci solitons. After the introduction, in section 2, we study three dimensional Sasakian manifolds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satisfying the curvature property R.Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show that the necessary and suficient condition for a Sasakian manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections 5 and 6, we study projectively at and concircularly at Sasakian manifold of dimension 3 respectively and find the type of an η-Ricci soliton on such manifold. The next section is devoted to the study of such a manifold admitting η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Three dimensional Sasakian manifolds admitting η-Ricci solitons\",\"authors\":\"D. Kar, P. Majhi\",\"doi\":\"10.31926/but.mif.2019.61.12.2.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we characterize the three dimensional Sasakian manifolds admitting η-almost Ricci solitons. After the introduction, in section 2, we study three dimensional Sasakian manifolds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satisfying the curvature property R.Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show that the necessary and suficient condition for a Sasakian manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections 5 and 6, we study projectively at and concircularly at Sasakian manifold of dimension 3 respectively and find the type of an η-Ricci soliton on such manifold. The next section is devoted to the study of such a manifold admitting η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2019.61.12.2.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2019.61.12.2.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文刻画了含有η-几乎Ricci孤子的三维Sasakian流形。在引言之后,在第2节中,我们研究了三维Sasakian流形。在第3节中,我们证明了满足曲率性质R的Sasakian流形中的η-Ricci孤子是收缩的,并降为Ricci孤子。在第4节中,我们证明了Sasakian流形不允许适当的η-Ricci孤立子存在的充要条件是它是Ricci对称的。在第5节和第6节中,我们分别在维数为3的Sasakian流形上和在该流形上进行了投影研究,并发现了该流形上η-Ricci孤立子的类型。下一节将研究这样一个允许η-Ricci孤立子的流形,并证明了一些等价条件。最后,在第8节中,我们证明了在三维Sasakian流形中,η-Ricci孤子变为Ricci孤子,当且仅当它是Ricci伪对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Three dimensional Sasakian manifolds admitting η-Ricci solitons
In this paper we characterize the three dimensional Sasakian manifolds admitting η-almost Ricci solitons. After the introduction, in section 2, we study three dimensional Sasakian manifolds. In section 3, we prove that an η-Ricci soliton in Sasakian manifolds satisfying the curvature property R.Q = 0 is shrinking and reduces to Ricci soliton. In section 4, we show that the necessary and suficient condition for a Sasakian manifold not admitting a proper η-Ricci soliton is that it is Ricci symmetric. In sections 5 and 6, we study projectively at and concircularly at Sasakian manifold of dimension 3 respectively and find the type of an η-Ricci soliton on such manifold. The next section is devoted to the study of such a manifold admitting η-Ricci soliton and we prove some equivalent conditions. Finally, in section 8, we prove that in a three dimensional Sasakian manifold an η-Ricci soliton becomes Ricci soliton if and only if it is Ricci pseudo-symmetric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信