Nur Kyairatul Syafinie Abdul Majid, Aqil Asnawi Abu Hanapah, M. R. Saad, H. Mohd Faizal, Azam Che Idris, Seyed Ehsan Hosseini, H. Koten, Mohd Rosdzimin Abdul Rahman
{"title":"改进流动空气动力学的微型燃烧器中的非预混液体燃料-空气火焰","authors":"Nur Kyairatul Syafinie Abdul Majid, Aqil Asnawi Abu Hanapah, M. R. Saad, H. Mohd Faizal, Azam Che Idris, Seyed Ehsan Hosseini, H. Koten, Mohd Rosdzimin Abdul Rahman","doi":"10.1080/23080477.2021.2015819","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study determines the effect of flow aerodynamics modification on the combustion characteristics of a new miniature combustor. The n-heptane was injected into the combustor at a flow rate of 1.0 ml/min to 2.5 ml/min, and the airflow rate varied between 7.0 l/min and 20.0 l/min at a successive fuel flow rate to maintain the equivalence ratio. The flame was confined in the combustor in the lean fuel regime. The modified combustor stabilized and sustained the flame at a high Reynolds number. This study used a numerical simulation of the isothermal flow to explain the results of the experiment. The recirculation zone at the sidewall bottom chamber extends the combustor operating regime to the higher Reynolds number. This recirculation balanced the flame propagation and flow velocity at higher Reynolds numbers and strengthen the flame anchoring inside the bottom chamber. The modified flow aerodynamics enhanced the combustion sustainability of the miniature combustors. It is a critical parameter in designing new combustors with a wide range of operation regimes at a small scale. GRAPHICAL ABSTRACT","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-Premixed Liquid Fuel Air Flame in a Miniature Combustor with Modified Flow Aerodynamics\",\"authors\":\"Nur Kyairatul Syafinie Abdul Majid, Aqil Asnawi Abu Hanapah, M. R. Saad, H. Mohd Faizal, Azam Che Idris, Seyed Ehsan Hosseini, H. Koten, Mohd Rosdzimin Abdul Rahman\",\"doi\":\"10.1080/23080477.2021.2015819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study determines the effect of flow aerodynamics modification on the combustion characteristics of a new miniature combustor. The n-heptane was injected into the combustor at a flow rate of 1.0 ml/min to 2.5 ml/min, and the airflow rate varied between 7.0 l/min and 20.0 l/min at a successive fuel flow rate to maintain the equivalence ratio. The flame was confined in the combustor in the lean fuel regime. The modified combustor stabilized and sustained the flame at a high Reynolds number. This study used a numerical simulation of the isothermal flow to explain the results of the experiment. The recirculation zone at the sidewall bottom chamber extends the combustor operating regime to the higher Reynolds number. This recirculation balanced the flame propagation and flow velocity at higher Reynolds numbers and strengthen the flame anchoring inside the bottom chamber. The modified flow aerodynamics enhanced the combustion sustainability of the miniature combustors. It is a critical parameter in designing new combustors with a wide range of operation regimes at a small scale. GRAPHICAL ABSTRACT\",\"PeriodicalId\":53436,\"journal\":{\"name\":\"Smart Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23080477.2021.2015819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2021.2015819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Non-Premixed Liquid Fuel Air Flame in a Miniature Combustor with Modified Flow Aerodynamics
ABSTRACT This study determines the effect of flow aerodynamics modification on the combustion characteristics of a new miniature combustor. The n-heptane was injected into the combustor at a flow rate of 1.0 ml/min to 2.5 ml/min, and the airflow rate varied between 7.0 l/min and 20.0 l/min at a successive fuel flow rate to maintain the equivalence ratio. The flame was confined in the combustor in the lean fuel regime. The modified combustor stabilized and sustained the flame at a high Reynolds number. This study used a numerical simulation of the isothermal flow to explain the results of the experiment. The recirculation zone at the sidewall bottom chamber extends the combustor operating regime to the higher Reynolds number. This recirculation balanced the flame propagation and flow velocity at higher Reynolds numbers and strengthen the flame anchoring inside the bottom chamber. The modified flow aerodynamics enhanced the combustion sustainability of the miniature combustors. It is a critical parameter in designing new combustors with a wide range of operation regimes at a small scale. GRAPHICAL ABSTRACT
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials