谐振子轨道相干态Wigner分布的标度渐近性

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Nicholas Lohr
{"title":"谐振子轨道相干态Wigner分布的标度渐近性","authors":"Nicholas Lohr","doi":"10.1080/03605302.2023.2180754","DOIUrl":null,"url":null,"abstract":"Abstract The main result of this article gives scaling asymptotics of the Wigner distributions of isotropic harmonic oscillator orbital coherent states concentrating along Hamiltonian orbits γ in shrinking tubes around γ in phase space. In particular, these Wigner distributions exhibit a hybrid semi-classical scaling. That is, simultaneously, we have an Airy scaling when the tube has radius normal to the energy surface Σ E , and a Gaussian scaling when the tube has radius tangent to Σ E .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Scaling asymptotics of Wigner distributions of harmonic oscillator orbital coherent states\",\"authors\":\"Nicholas Lohr\",\"doi\":\"10.1080/03605302.2023.2180754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The main result of this article gives scaling asymptotics of the Wigner distributions of isotropic harmonic oscillator orbital coherent states concentrating along Hamiltonian orbits γ in shrinking tubes around γ in phase space. In particular, these Wigner distributions exhibit a hybrid semi-classical scaling. That is, simultaneously, we have an Airy scaling when the tube has radius normal to the energy surface Σ E , and a Gaussian scaling when the tube has radius tangent to Σ E .\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/03605302.2023.2180754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/03605302.2023.2180754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文的主要结果给出了相空间中沿哈密顿轨道γ集中的各向同性谐振子轨道相干态的维格纳分布的标度渐近性。特别是,这些维格纳分布表现出混合半经典标度。也就是说,同时,当管的半径垂直于能量面Σ E时,我们有一个艾里缩放,当管的半径与Σ E相切时,我们有一个高斯缩放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling asymptotics of Wigner distributions of harmonic oscillator orbital coherent states
Abstract The main result of this article gives scaling asymptotics of the Wigner distributions of isotropic harmonic oscillator orbital coherent states concentrating along Hamiltonian orbits γ in shrinking tubes around γ in phase space. In particular, these Wigner distributions exhibit a hybrid semi-classical scaling. That is, simultaneously, we have an Airy scaling when the tube has radius normal to the energy surface Σ E , and a Gaussian scaling when the tube has radius tangent to Σ E .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信