{"title":"关于特征$p>0的代数闭域上曲线的可容许基群$","authors":"Yu Yang","doi":"10.4171/PRIMS/54-3-4","DOIUrl":null,"url":null,"abstract":"In the present paper, we study the anabelian geometry of pointed stable curves over algebraically closed fields of positive characteristic. We prove that the semigraph of anabelioids of PSC-type arising from a pointed stable curve over an algebraically closed field of positive characteristic can be reconstructed group-theoretically from its fundamental group. This result may be regarded as a version of the combinatorial Grothendieck conjecture in positive characteristic. As an application, we prove that, if a pointed stable curve over an algebraic closure of a finite field satisfies certain conditions, then the isomorphism class of the admissible fundamental group of the pointed stable curve completely determines the isomorphism class of the pointed stable curve as a scheme. This result generalizes a result of A. Tamagawa to the case of (possibly singular) pointed stable curves.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/PRIMS/54-3-4","citationCount":"16","resultStr":"{\"title\":\"On the Admissible Fundamental Groups of Curves over Algebraically Closed Fields of Characteristic $p > 0$\",\"authors\":\"Yu Yang\",\"doi\":\"10.4171/PRIMS/54-3-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we study the anabelian geometry of pointed stable curves over algebraically closed fields of positive characteristic. We prove that the semigraph of anabelioids of PSC-type arising from a pointed stable curve over an algebraically closed field of positive characteristic can be reconstructed group-theoretically from its fundamental group. This result may be regarded as a version of the combinatorial Grothendieck conjecture in positive characteristic. As an application, we prove that, if a pointed stable curve over an algebraic closure of a finite field satisfies certain conditions, then the isomorphism class of the admissible fundamental group of the pointed stable curve completely determines the isomorphism class of the pointed stable curve as a scheme. This result generalizes a result of A. Tamagawa to the case of (possibly singular) pointed stable curves.\",\"PeriodicalId\":54528,\"journal\":{\"name\":\"Publications of the Research Institute for Mathematical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2018-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/PRIMS/54-3-4\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Research Institute for Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/PRIMS/54-3-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/PRIMS/54-3-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the Admissible Fundamental Groups of Curves over Algebraically Closed Fields of Characteristic $p > 0$
In the present paper, we study the anabelian geometry of pointed stable curves over algebraically closed fields of positive characteristic. We prove that the semigraph of anabelioids of PSC-type arising from a pointed stable curve over an algebraically closed field of positive characteristic can be reconstructed group-theoretically from its fundamental group. This result may be regarded as a version of the combinatorial Grothendieck conjecture in positive characteristic. As an application, we prove that, if a pointed stable curve over an algebraic closure of a finite field satisfies certain conditions, then the isomorphism class of the admissible fundamental group of the pointed stable curve completely determines the isomorphism class of the pointed stable curve as a scheme. This result generalizes a result of A. Tamagawa to the case of (possibly singular) pointed stable curves.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.