{"title":"废弃水道智能生态城市走廊的催化剂方法","authors":"S. Biscaya, H. Elkadi","doi":"10.17645/up.v8i3.6866","DOIUrl":null,"url":null,"abstract":"Green and blue infrastructures have always played a key role in shaping European cities, acting as drivers for urban and rural development and regeneration. There is a reawakening of consciousness by European cities towards their waterways following long periods of estrangement relating to (de)industrialisation and, consequently, the decline in industrial riverfronts. This article reviews the precedents relating to the regeneration of disused waterways in European cities, depicts the common threads that distinguish those locales, traces similarities with the Manchester Ship Canal, and develops a catalyst-based approach for future development. The catalyst-based approach is a well-established methodology in other disciplines but has not been tested in urban design. The article investigates the Deux-Rives in Strasbourg and similarities to, and possible scenarios for, future development of the Manchester Ship Canal. The catalyst-based approach focuses on connectedness, employment, health and well-being, affordable housing, and the challenge of governance in managing cross-border areas around waterways. The article explores the potential of a catalyst-based approach in developing a smart ecological urban corridor, applying possible scenarios alongside the Manchester Ship Canal. Through an investigation of the possible application of the distinctive innovative methodology, combining the catalyst-based approach with a community engagement process, the article examines possible scenarios of urban development with green and blue infrastructure linked by a linear mobility spine for a smart and sustainable urban corridor between Manchester and Liverpool alongside the Manchester Ship Canal.","PeriodicalId":51735,"journal":{"name":"Urban Planning","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Catalyst Approach for Smart Ecological Urban Corridors at Disused Waterways\",\"authors\":\"S. Biscaya, H. Elkadi\",\"doi\":\"10.17645/up.v8i3.6866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green and blue infrastructures have always played a key role in shaping European cities, acting as drivers for urban and rural development and regeneration. There is a reawakening of consciousness by European cities towards their waterways following long periods of estrangement relating to (de)industrialisation and, consequently, the decline in industrial riverfronts. This article reviews the precedents relating to the regeneration of disused waterways in European cities, depicts the common threads that distinguish those locales, traces similarities with the Manchester Ship Canal, and develops a catalyst-based approach for future development. The catalyst-based approach is a well-established methodology in other disciplines but has not been tested in urban design. The article investigates the Deux-Rives in Strasbourg and similarities to, and possible scenarios for, future development of the Manchester Ship Canal. The catalyst-based approach focuses on connectedness, employment, health and well-being, affordable housing, and the challenge of governance in managing cross-border areas around waterways. The article explores the potential of a catalyst-based approach in developing a smart ecological urban corridor, applying possible scenarios alongside the Manchester Ship Canal. Through an investigation of the possible application of the distinctive innovative methodology, combining the catalyst-based approach with a community engagement process, the article examines possible scenarios of urban development with green and blue infrastructure linked by a linear mobility spine for a smart and sustainable urban corridor between Manchester and Liverpool alongside the Manchester Ship Canal.\",\"PeriodicalId\":51735,\"journal\":{\"name\":\"Urban Planning\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Planning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17645/up.v8i3.6866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"URBAN STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Planning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17645/up.v8i3.6866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"URBAN STUDIES","Score":null,"Total":0}
A Catalyst Approach for Smart Ecological Urban Corridors at Disused Waterways
Green and blue infrastructures have always played a key role in shaping European cities, acting as drivers for urban and rural development and regeneration. There is a reawakening of consciousness by European cities towards their waterways following long periods of estrangement relating to (de)industrialisation and, consequently, the decline in industrial riverfronts. This article reviews the precedents relating to the regeneration of disused waterways in European cities, depicts the common threads that distinguish those locales, traces similarities with the Manchester Ship Canal, and develops a catalyst-based approach for future development. The catalyst-based approach is a well-established methodology in other disciplines but has not been tested in urban design. The article investigates the Deux-Rives in Strasbourg and similarities to, and possible scenarios for, future development of the Manchester Ship Canal. The catalyst-based approach focuses on connectedness, employment, health and well-being, affordable housing, and the challenge of governance in managing cross-border areas around waterways. The article explores the potential of a catalyst-based approach in developing a smart ecological urban corridor, applying possible scenarios alongside the Manchester Ship Canal. Through an investigation of the possible application of the distinctive innovative methodology, combining the catalyst-based approach with a community engagement process, the article examines possible scenarios of urban development with green and blue infrastructure linked by a linear mobility spine for a smart and sustainable urban corridor between Manchester and Liverpool alongside the Manchester Ship Canal.
期刊介绍:
Urban Planning is a new international peer-reviewed open access journal of urban studies aimed at advancing understandings and ideas of humankind’s habitats – villages, towns, cities, megacities – in order to promote progress and quality of life. The journal brings urban science and urban planning together with other cross-disciplinary fields such as sociology, ecology, psychology, technology, politics, philosophy, geography, environmental science, economics, maths and computer science, to understand processes influencing urban forms and structures, their relations with environment and life quality, with the final aim to identify patterns towards progress and quality of life.