{"title":"提高插电式串联混合动力汽车系统的燃油经济性","authors":"H. Saad","doi":"10.2478/mme-2019-0018","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the design and simulation of a hybrid vehicle with a fully functional driving model is presented. Actual velocities and desired velocities are compared and matched to get the optimum values of a vehicle. Fuel economy is calculated to get miles per gallon gasoline equivalent (MPGe). The MPGe for a hybrid vehicle is compared with the MPGe for a conventional vehicle to get the best MPGe in a hybrid car. A higher performance of output power of a vehicle is obtained.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":"23 1","pages":"130 - 137"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the fuel economy of a plug-in series hybrid vehicle system\",\"authors\":\"H. Saad\",\"doi\":\"10.2478/mme-2019-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the design and simulation of a hybrid vehicle with a fully functional driving model is presented. Actual velocities and desired velocities are compared and matched to get the optimum values of a vehicle. Fuel economy is calculated to get miles per gallon gasoline equivalent (MPGe). The MPGe for a hybrid vehicle is compared with the MPGe for a conventional vehicle to get the best MPGe in a hybrid car. A higher performance of output power of a vehicle is obtained.\",\"PeriodicalId\":53557,\"journal\":{\"name\":\"Mechanics and Mechanical Engineering\",\"volume\":\"23 1\",\"pages\":\"130 - 137\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mme-2019-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2019-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Enhancing the fuel economy of a plug-in series hybrid vehicle system
Abstract In this paper, the design and simulation of a hybrid vehicle with a fully functional driving model is presented. Actual velocities and desired velocities are compared and matched to get the optimum values of a vehicle. Fuel economy is calculated to get miles per gallon gasoline equivalent (MPGe). The MPGe for a hybrid vehicle is compared with the MPGe for a conventional vehicle to get the best MPGe in a hybrid car. A higher performance of output power of a vehicle is obtained.