{"title":"整数作为一个单位中四个四面体数和八个五面体数的和","authors":"Benjamin Lee Warren","doi":"10.1080/00029890.2023.2199652","DOIUrl":null,"url":null,"abstract":"In 1850, Frederick Pollock [1] conjectured that every positive integer can be written as the sum of at most five tetrahedral numbers, where the nth tetrahedral number is given by Tn = 6n(n + 1)(n + 2). Earlier this year, Vadim Ponomarenko solved the weak version of Pollock’s conjecture [2] as Tn − Tn−1 − Tn−1 + Tn−2 = n. This solution is weak in the sense that it includes subtraction as well as addition instead of only addition. The following identity is a generalization of his solution at a = 2 and k = 1.","PeriodicalId":7761,"journal":{"name":"American Mathematical Monthly","volume":"130 1","pages":"522 - 522"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integers as Sums of Four Tetrahedral Numbers and Eight Pentatope Numbers in One Identity\",\"authors\":\"Benjamin Lee Warren\",\"doi\":\"10.1080/00029890.2023.2199652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1850, Frederick Pollock [1] conjectured that every positive integer can be written as the sum of at most five tetrahedral numbers, where the nth tetrahedral number is given by Tn = 6n(n + 1)(n + 2). Earlier this year, Vadim Ponomarenko solved the weak version of Pollock’s conjecture [2] as Tn − Tn−1 − Tn−1 + Tn−2 = n. This solution is weak in the sense that it includes subtraction as well as addition instead of only addition. The following identity is a generalization of his solution at a = 2 and k = 1.\",\"PeriodicalId\":7761,\"journal\":{\"name\":\"American Mathematical Monthly\",\"volume\":\"130 1\",\"pages\":\"522 - 522\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Mathematical Monthly\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00029890.2023.2199652\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Mathematical Monthly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00029890.2023.2199652","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Integers as Sums of Four Tetrahedral Numbers and Eight Pentatope Numbers in One Identity
In 1850, Frederick Pollock [1] conjectured that every positive integer can be written as the sum of at most five tetrahedral numbers, where the nth tetrahedral number is given by Tn = 6n(n + 1)(n + 2). Earlier this year, Vadim Ponomarenko solved the weak version of Pollock’s conjecture [2] as Tn − Tn−1 − Tn−1 + Tn−2 = n. This solution is weak in the sense that it includes subtraction as well as addition instead of only addition. The following identity is a generalization of his solution at a = 2 and k = 1.
期刊介绍:
The Monthly''s readers expect a high standard of exposition; they look for articles that inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged.
Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue.
Abstracts for articles or notes should entice the prospective reader into exploring the subject of the paper and should make it clear to the reader why this paper is interesting and important. The abstract should highlight the concepts of the paper rather than summarize the mechanics. The abstract is the first impression of the paper, not a technical summary of the paper. Excessive use of notation is discouraged as it can limit the interest of the broad readership of the MAA, and can limit search-ability of the article.