{"title":"银纳米粒子的毒性、制备方法及应用研究进展","authors":"A. Choudhary, Sanjiv Singh, V. Ravichandiran","doi":"10.1080/15376516.2022.2064257","DOIUrl":null,"url":null,"abstract":"Abstract Nanoparticles (range under 100 nm) prepared by different technology modes including physical, chemical, biological have many applications. Like in the same way silver nanoparticles are used for different beneficial actions like antimicrobial- antibacterial, antifungal and antiviral, anti-inflammatory, anticancer, water treatment, cosmetics, and in the textiles industry. As silver nanoparticles have shown wide application by different mechanisms against various pathophyisiological conditions. To maintain safety under their use, the study of the toxicity of silver nanoparticles has become more important. Health agencies like WHO, NIOSH, EPA, EFSA & EU have issued guidelines for unrisky exposure limit of silver nanopartricles in drinking water, food and breathing. The main purpose of this article is to summarize genotoxicity, cytotoxicity, neurotoxicity, reproductive toxicity of silver nanoparticles in both in vitro and in vivo studies focused on mechanism and methods of detection. The main mechanism of silver nanoparticles toxicity involves disruption of the mitochondrial respiratory chain, which results in the generation of ROS and the stoppage of ATP synthesis which further leads to a cascade of toxic events. ROS production measured by the technique like flow cytometry using DCFHDA dye and other method includes a confocal microscope, lipid peroxidation, etc. Different assay techniques used for evaluation of different kind of toxicities such as the comet assay, MTT assay, and histological assay, are also discussed.","PeriodicalId":49117,"journal":{"name":"Toxicology Mechanisms and Methods","volume":"32 1","pages":"650 - 661"},"PeriodicalIF":2.8000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Toxicity, preparation methods and applications of silver nanoparticles: an update\",\"authors\":\"A. Choudhary, Sanjiv Singh, V. Ravichandiran\",\"doi\":\"10.1080/15376516.2022.2064257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Nanoparticles (range under 100 nm) prepared by different technology modes including physical, chemical, biological have many applications. Like in the same way silver nanoparticles are used for different beneficial actions like antimicrobial- antibacterial, antifungal and antiviral, anti-inflammatory, anticancer, water treatment, cosmetics, and in the textiles industry. As silver nanoparticles have shown wide application by different mechanisms against various pathophyisiological conditions. To maintain safety under their use, the study of the toxicity of silver nanoparticles has become more important. Health agencies like WHO, NIOSH, EPA, EFSA & EU have issued guidelines for unrisky exposure limit of silver nanopartricles in drinking water, food and breathing. The main purpose of this article is to summarize genotoxicity, cytotoxicity, neurotoxicity, reproductive toxicity of silver nanoparticles in both in vitro and in vivo studies focused on mechanism and methods of detection. The main mechanism of silver nanoparticles toxicity involves disruption of the mitochondrial respiratory chain, which results in the generation of ROS and the stoppage of ATP synthesis which further leads to a cascade of toxic events. ROS production measured by the technique like flow cytometry using DCFHDA dye and other method includes a confocal microscope, lipid peroxidation, etc. Different assay techniques used for evaluation of different kind of toxicities such as the comet assay, MTT assay, and histological assay, are also discussed.\",\"PeriodicalId\":49117,\"journal\":{\"name\":\"Toxicology Mechanisms and Methods\",\"volume\":\"32 1\",\"pages\":\"650 - 661\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Mechanisms and Methods\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/15376516.2022.2064257\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Mechanisms and Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15376516.2022.2064257","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Toxicity, preparation methods and applications of silver nanoparticles: an update
Abstract Nanoparticles (range under 100 nm) prepared by different technology modes including physical, chemical, biological have many applications. Like in the same way silver nanoparticles are used for different beneficial actions like antimicrobial- antibacterial, antifungal and antiviral, anti-inflammatory, anticancer, water treatment, cosmetics, and in the textiles industry. As silver nanoparticles have shown wide application by different mechanisms against various pathophyisiological conditions. To maintain safety under their use, the study of the toxicity of silver nanoparticles has become more important. Health agencies like WHO, NIOSH, EPA, EFSA & EU have issued guidelines for unrisky exposure limit of silver nanopartricles in drinking water, food and breathing. The main purpose of this article is to summarize genotoxicity, cytotoxicity, neurotoxicity, reproductive toxicity of silver nanoparticles in both in vitro and in vivo studies focused on mechanism and methods of detection. The main mechanism of silver nanoparticles toxicity involves disruption of the mitochondrial respiratory chain, which results in the generation of ROS and the stoppage of ATP synthesis which further leads to a cascade of toxic events. ROS production measured by the technique like flow cytometry using DCFHDA dye and other method includes a confocal microscope, lipid peroxidation, etc. Different assay techniques used for evaluation of different kind of toxicities such as the comet assay, MTT assay, and histological assay, are also discussed.
期刊介绍:
Toxicology Mechanisms and Methods is a peer-reviewed journal whose aim is twofold. Firstly, the journal contains original research on subjects dealing with the mechanisms by which foreign chemicals cause toxic tissue injury. Chemical substances of interest include industrial compounds, environmental pollutants, hazardous wastes, drugs, pesticides, and chemical warfare agents. The scope of the journal spans from molecular and cellular mechanisms of action to the consideration of mechanistic evidence in establishing regulatory policy.
Secondly, the journal addresses aspects of the development, validation, and application of new and existing laboratory methods, techniques, and equipment. A variety of research methods are discussed, including:
In vivo studies with standard and alternative species
In vitro studies and alternative methodologies
Molecular, biochemical, and cellular techniques
Pharmacokinetics and pharmacodynamics
Mathematical modeling and computer programs
Forensic analyses
Risk assessment
Data collection and analysis.