{"title":"Hilbert空间中正算子积分变换𝒟-Logarithmic的算子子可加性","authors":"S. Dragomir","doi":"10.2478/amsil-2021-0004","DOIUrl":null,"url":null,"abstract":"Abstract For a continuous and positive function ω (λ); λ> 0 and μ a positive measure on [0; ∞) we consider the following 𝒟-logarithmic integral transform𝒟ℒog(w,μ)(T):=∫0∞w(λ)1n(λ+Tλ)dμ(λ),\\mathcal{D}\\mathcal{L}og\\left( {w,\\mu } \\right)\\left( T \\right): = \\int_0^\\infty {w\\left( \\lambda \\right)1{\\rm{n}}\\left( {{{\\lambda + T} \\over \\lambda }} \\right)d\\mu \\left( \\lambda \\right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A, B > 0 with BA + AB ≥ 0, then 𝒟ℒog(w,μ)(A)+𝒟ℒog(w,μ)(B)≥𝒟ℒog(w,μ)(A+B).\\mathcal{D}\\mathcal{L}og\\left( {w,\\mu } \\right)\\left( A \\right) + \\mathcal{D}\\mathcal{L}og\\left( {w,\\mu } \\right)\\left( B \\right) \\ge \\mathcal{D}\\mathcal{L}og\\left( {w,\\mu } \\right)\\left( {A + B} \\right). In particular we have 16π2+dilog(A+B)≥dilog(A)+dilog(B),{1 \\over 6}{\\pi ^2} + {\\rm{di}}\\log \\left( {A + B} \\right) \\ge {\\rm{di}}\\log \\left( A \\right) + {\\rm{di}}\\log \\left( B \\right), where the dilogarithmic function dilog : [0; ∞) → ℝ is defined by dilog(t):=∫1t1ns1-sds, t≥0.{\\rm{di}}\\log \\left( t \\right): = \\int_1^t {{{1ns} \\over {1 - s}}ds,} \\,\\,\\,\\,t \\ge 0. Some examples for integral transform 𝒟og (˙;˙) related to the operator monotone functions are also provided.","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"35 1","pages":"158 - 171"},"PeriodicalIF":0.4000,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Operator Subadditivity of the 𝒟-Logarithmic Integral Transform for Positive Operators in Hilbert Spaces\",\"authors\":\"S. Dragomir\",\"doi\":\"10.2478/amsil-2021-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For a continuous and positive function ω (λ); λ> 0 and μ a positive measure on [0; ∞) we consider the following 𝒟-logarithmic integral transform𝒟ℒog(w,μ)(T):=∫0∞w(λ)1n(λ+Tλ)dμ(λ),\\\\mathcal{D}\\\\mathcal{L}og\\\\left( {w,\\\\mu } \\\\right)\\\\left( T \\\\right): = \\\\int_0^\\\\infty {w\\\\left( \\\\lambda \\\\right)1{\\\\rm{n}}\\\\left( {{{\\\\lambda + T} \\\\over \\\\lambda }} \\\\right)d\\\\mu \\\\left( \\\\lambda \\\\right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A, B > 0 with BA + AB ≥ 0, then 𝒟ℒog(w,μ)(A)+𝒟ℒog(w,μ)(B)≥𝒟ℒog(w,μ)(A+B).\\\\mathcal{D}\\\\mathcal{L}og\\\\left( {w,\\\\mu } \\\\right)\\\\left( A \\\\right) + \\\\mathcal{D}\\\\mathcal{L}og\\\\left( {w,\\\\mu } \\\\right)\\\\left( B \\\\right) \\\\ge \\\\mathcal{D}\\\\mathcal{L}og\\\\left( {w,\\\\mu } \\\\right)\\\\left( {A + B} \\\\right). In particular we have 16π2+dilog(A+B)≥dilog(A)+dilog(B),{1 \\\\over 6}{\\\\pi ^2} + {\\\\rm{di}}\\\\log \\\\left( {A + B} \\\\right) \\\\ge {\\\\rm{di}}\\\\log \\\\left( A \\\\right) + {\\\\rm{di}}\\\\log \\\\left( B \\\\right), where the dilogarithmic function dilog : [0; ∞) → ℝ is defined by dilog(t):=∫1t1ns1-sds, t≥0.{\\\\rm{di}}\\\\log \\\\left( t \\\\right): = \\\\int_1^t {{{1ns} \\\\over {1 - s}}ds,} \\\\,\\\\,\\\\,\\\\,t \\\\ge 0. Some examples for integral transform 𝒟og (˙;˙) related to the operator monotone functions are also provided.\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"35 1\",\"pages\":\"158 - 171\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2021-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2021-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Operator Subadditivity of the 𝒟-Logarithmic Integral Transform for Positive Operators in Hilbert Spaces
Abstract For a continuous and positive function ω (λ); λ> 0 and μ a positive measure on [0; ∞) we consider the following 𝒟-logarithmic integral transform𝒟ℒog(w,μ)(T):=∫0∞w(λ)1n(λ+Tλ)dμ(λ),\mathcal{D}\mathcal{L}og\left( {w,\mu } \right)\left( T \right): = \int_0^\infty {w\left( \lambda \right)1{\rm{n}}\left( {{{\lambda + T} \over \lambda }} \right)d\mu \left( \lambda \right),} where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A, B > 0 with BA + AB ≥ 0, then 𝒟ℒog(w,μ)(A)+𝒟ℒog(w,μ)(B)≥𝒟ℒog(w,μ)(A+B).\mathcal{D}\mathcal{L}og\left( {w,\mu } \right)\left( A \right) + \mathcal{D}\mathcal{L}og\left( {w,\mu } \right)\left( B \right) \ge \mathcal{D}\mathcal{L}og\left( {w,\mu } \right)\left( {A + B} \right). In particular we have 16π2+dilog(A+B)≥dilog(A)+dilog(B),{1 \over 6}{\pi ^2} + {\rm{di}}\log \left( {A + B} \right) \ge {\rm{di}}\log \left( A \right) + {\rm{di}}\log \left( B \right), where the dilogarithmic function dilog : [0; ∞) → ℝ is defined by dilog(t):=∫1t1ns1-sds, t≥0.{\rm{di}}\log \left( t \right): = \int_1^t {{{1ns} \over {1 - s}}ds,} \,\,\,\,t \ge 0. Some examples for integral transform 𝒟og (˙;˙) related to the operator monotone functions are also provided.