随机二部图的沙堆群

Pub Date : 2022-10-29 DOI:10.1007/s00026-022-00616-0
Shaked Koplewitz
{"title":"随机二部图的沙堆群","authors":"Shaked Koplewitz","doi":"10.1007/s00026-022-00616-0","DOIUrl":null,"url":null,"abstract":"<div><p>We determine the asymptotic distribution of the <i>p</i>-rank of the sandpile groups of random bipartite graphs. We see that this depends on the ratio between the number of vertices on each side, with a threshold when the ratio between the sides is equal to <span>\\(\\frac{1}{p}\\)</span>. We follow the approach of Wood (J Am Math Soc 30(4):915–958, 2017) and consider random graphs as a special case of random matrices, and rely on a variant the definition of min-entropy given by Maples (Cokernels of random matrices satisfy the Cohen–Lenstra heuristics, 2013) to obtain useful results about these random matrices. Our results show that unlike the sandpile groups of Erdős–Rényi random graphs, the distribution of the sandpile groups of random bipartite graphs depends on the properties of the graph, rather than coming from some more general random group model.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Sandpile Groups of Random Bipartite Graphs\",\"authors\":\"Shaked Koplewitz\",\"doi\":\"10.1007/s00026-022-00616-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We determine the asymptotic distribution of the <i>p</i>-rank of the sandpile groups of random bipartite graphs. We see that this depends on the ratio between the number of vertices on each side, with a threshold when the ratio between the sides is equal to <span>\\\\(\\\\frac{1}{p}\\\\)</span>. We follow the approach of Wood (J Am Math Soc 30(4):915–958, 2017) and consider random graphs as a special case of random matrices, and rely on a variant the definition of min-entropy given by Maples (Cokernels of random matrices satisfy the Cohen–Lenstra heuristics, 2013) to obtain useful results about these random matrices. Our results show that unlike the sandpile groups of Erdős–Rényi random graphs, the distribution of the sandpile groups of random bipartite graphs depends on the properties of the graph, rather than coming from some more general random group model.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00026-022-00616-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00616-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们确定了随机二部图的沙堆群的p-秩的渐近分布。我们看到,这取决于每边上顶点数量之间的比率,当边之间的比率等于\(\frac{1}{p}\)时,会有一个阈值。我们遵循Wood(J Am Math Soc 30(4):915–9582017)的方法,将随机图视为随机矩阵的特例,并依靠Maples给出的最小熵定义(随机矩阵的Cokers满足Cohen–Lenstra启发式,2013)来获得关于这些随机矩阵的有用结果。我们的结果表明,与Erdõs–Rényi随机图的沙堆群不同,随机二分图的沙坑群的分布取决于图的性质,而不是来自于一些更一般的随机群模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sandpile Groups of Random Bipartite Graphs

We determine the asymptotic distribution of the p-rank of the sandpile groups of random bipartite graphs. We see that this depends on the ratio between the number of vertices on each side, with a threshold when the ratio between the sides is equal to \(\frac{1}{p}\). We follow the approach of Wood (J Am Math Soc 30(4):915–958, 2017) and consider random graphs as a special case of random matrices, and rely on a variant the definition of min-entropy given by Maples (Cokernels of random matrices satisfy the Cohen–Lenstra heuristics, 2013) to obtain useful results about these random matrices. Our results show that unlike the sandpile groups of Erdős–Rényi random graphs, the distribution of the sandpile groups of random bipartite graphs depends on the properties of the graph, rather than coming from some more general random group model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信