Gutman指数、边- wiener指数和边-连通性

IF 0.6 Q3 MATHEMATICS
J. P. Mazorodze, S. Mukwembi, T. Vetrík
{"title":"Gutman指数、边- wiener指数和边-连通性","authors":"J. P. Mazorodze, S. Mukwembi, T. Vetrík","doi":"10.22108/TOC.2020.124104.1749","DOIUrl":null,"url":null,"abstract":"‎We study the Gutman index ${rm Gut}(G)$ and the edge-Wiener index $W_e (G)$ of connected graphs $G$ of given order $n$ and edge-connectivity $lambda$‎. ‎We show that the bound ${rm Gut}(G) le frac{2^4 cdot 3}{5^5 (lambda+1)} n^5‎ + ‎O(n^4)$ is asymptotically tight for $lambda ge 8$‎. ‎We improve this result considerably for $lambda le 7$ by presenting asymptotically tight upper bounds on ${rm Gut}(G)$ and $W_e (G)$ for $2 le lambda le 7$‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"9 1","pages":"231-242"},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gutman index, edge-Wiener index and edge-connectivity\",\"authors\":\"J. P. Mazorodze, S. Mukwembi, T. Vetrík\",\"doi\":\"10.22108/TOC.2020.124104.1749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎We study the Gutman index ${rm Gut}(G)$ and the edge-Wiener index $W_e (G)$ of connected graphs $G$ of given order $n$ and edge-connectivity $lambda$‎. ‎We show that the bound ${rm Gut}(G) le frac{2^4 cdot 3}{5^5 (lambda+1)} n^5‎ + ‎O(n^4)$ is asymptotically tight for $lambda ge 8$‎. ‎We improve this result considerably for $lambda le 7$ by presenting asymptotically tight upper bounds on ${rm Gut}(G)$ and $W_e (G)$ for $2 le lambda le 7$‎.\",\"PeriodicalId\":43837,\"journal\":{\"name\":\"Transactions on Combinatorics\",\"volume\":\"9 1\",\"pages\":\"231-242\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22108/TOC.2020.124104.1749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.124104.1749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

‎我们研究了给定阶$n$的连通图$G$和边连通性$lambda的Gutman指数${rm-Gut}(G)$和边Wiener指数$W_e(G)$‎. ‎我们证明了有界${rm-Gut}(G)le frac{2^4cdot3}{5^5(lambda+1)}n^5‎ + ‎O(n^4)$对于$lambda ge8是渐近紧的$‎. ‎对于$lambda le 7$,我们通过在$2 le lambda le 7的${rm-Gut}(G)$和$W_e(G)$上给出渐近紧上界,大大改进了这个结果$‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gutman index, edge-Wiener index and edge-connectivity
‎We study the Gutman index ${rm Gut}(G)$ and the edge-Wiener index $W_e (G)$ of connected graphs $G$ of given order $n$ and edge-connectivity $lambda$‎. ‎We show that the bound ${rm Gut}(G) le frac{2^4 cdot 3}{5^5 (lambda+1)} n^5‎ + ‎O(n^4)$ is asymptotically tight for $lambda ge 8$‎. ‎We improve this result considerably for $lambda le 7$ by presenting asymptotically tight upper bounds on ${rm Gut}(G)$ and $W_e (G)$ for $2 le lambda le 7$‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信