{"title":"伊朗高层办公楼光伏窗户的最佳窗墙比范围","authors":"Soheil Fathi, A. Kavoosi","doi":"10.15627/JD.2021.10","DOIUrl":null,"url":null,"abstract":"Windows are one of the weakest building components concerning high thermal losses. Traditional windows cannot adapt to external and internal environmental conditions. On the other hand, smart windows such as electrochromic (EC) windows do not emit greenhouse gases and adapt to environmental conditions and increase indoor environmental quality. The combination of EC windows and building integrated photovoltaic system (BIPV) is called photovoltachromic (PVC) windows. This paper aims to find optimal window to wall ratio (WWR) ranges of PVC windows in a high-rise office building model in four different cities in Iran. This paper uses several simulations to find the optimal WWR ranges of PVC windows using Radiance and EnergyPlus. First, the minimum acceptable WWR value in each climate condition was identified using several simulations without any optimization tools. Afterward, traditional windows were replaced with EC windows and results indicated that energy consumption of the building reduced up to 15.94%. In the next stage, BIPV was combined with EC windows, and results indicated that BIPV reduced energy consumption of the building up to 7.55%. Finally, simulation results showed that PVC windows reduced energy consumption of the building up to 16.31% in Kermanshah, 19.69% in Tehran, 18.59% in Yazd and 17.36% in Bandar Abbas. Also, the optimal WWR range of PVC windows in Kermanshah was 80-90%, while it was 70-80% in Tehran, Yazd and Bandar Abbas. Simulation results indicated that cooling degree days (CDD) of the site, where buildings were located, effected on the optimal WWR range of PVC windows in high-rise office buildings. An analytical approach was used to validate simulation results, and it showed that simulation results had 1.60-6.22% error.","PeriodicalId":37388,"journal":{"name":"Journal of Daylighting","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Window to Wall Ratio Ranges of Photovoltachromic Windows in High-Rise Office Buildings of Iran\",\"authors\":\"Soheil Fathi, A. Kavoosi\",\"doi\":\"10.15627/JD.2021.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Windows are one of the weakest building components concerning high thermal losses. Traditional windows cannot adapt to external and internal environmental conditions. On the other hand, smart windows such as electrochromic (EC) windows do not emit greenhouse gases and adapt to environmental conditions and increase indoor environmental quality. The combination of EC windows and building integrated photovoltaic system (BIPV) is called photovoltachromic (PVC) windows. This paper aims to find optimal window to wall ratio (WWR) ranges of PVC windows in a high-rise office building model in four different cities in Iran. This paper uses several simulations to find the optimal WWR ranges of PVC windows using Radiance and EnergyPlus. First, the minimum acceptable WWR value in each climate condition was identified using several simulations without any optimization tools. Afterward, traditional windows were replaced with EC windows and results indicated that energy consumption of the building reduced up to 15.94%. In the next stage, BIPV was combined with EC windows, and results indicated that BIPV reduced energy consumption of the building up to 7.55%. Finally, simulation results showed that PVC windows reduced energy consumption of the building up to 16.31% in Kermanshah, 19.69% in Tehran, 18.59% in Yazd and 17.36% in Bandar Abbas. Also, the optimal WWR range of PVC windows in Kermanshah was 80-90%, while it was 70-80% in Tehran, Yazd and Bandar Abbas. Simulation results indicated that cooling degree days (CDD) of the site, where buildings were located, effected on the optimal WWR range of PVC windows in high-rise office buildings. An analytical approach was used to validate simulation results, and it showed that simulation results had 1.60-6.22% error.\",\"PeriodicalId\":37388,\"journal\":{\"name\":\"Journal of Daylighting\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Daylighting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15627/JD.2021.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Daylighting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15627/JD.2021.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Energy","Score":null,"Total":0}
Optimal Window to Wall Ratio Ranges of Photovoltachromic Windows in High-Rise Office Buildings of Iran
Windows are one of the weakest building components concerning high thermal losses. Traditional windows cannot adapt to external and internal environmental conditions. On the other hand, smart windows such as electrochromic (EC) windows do not emit greenhouse gases and adapt to environmental conditions and increase indoor environmental quality. The combination of EC windows and building integrated photovoltaic system (BIPV) is called photovoltachromic (PVC) windows. This paper aims to find optimal window to wall ratio (WWR) ranges of PVC windows in a high-rise office building model in four different cities in Iran. This paper uses several simulations to find the optimal WWR ranges of PVC windows using Radiance and EnergyPlus. First, the minimum acceptable WWR value in each climate condition was identified using several simulations without any optimization tools. Afterward, traditional windows were replaced with EC windows and results indicated that energy consumption of the building reduced up to 15.94%. In the next stage, BIPV was combined with EC windows, and results indicated that BIPV reduced energy consumption of the building up to 7.55%. Finally, simulation results showed that PVC windows reduced energy consumption of the building up to 16.31% in Kermanshah, 19.69% in Tehran, 18.59% in Yazd and 17.36% in Bandar Abbas. Also, the optimal WWR range of PVC windows in Kermanshah was 80-90%, while it was 70-80% in Tehran, Yazd and Bandar Abbas. Simulation results indicated that cooling degree days (CDD) of the site, where buildings were located, effected on the optimal WWR range of PVC windows in high-rise office buildings. An analytical approach was used to validate simulation results, and it showed that simulation results had 1.60-6.22% error.
期刊介绍:
Journal of Daylighting is an international journal devoted to investigations of daylighting in buildings. It is the leading journal that publishes original research on all aspects of solar energy and lighting. Areas of special interest for this journal include, but are not limited to, the following: -Daylighting systems -Lighting simulation -Lighting designs -Luminaires -Lighting metrology and light quality -Lighting control -Building physics - lighting -Building energy modeling -Energy efficient buildings -Zero-energy buildings -Indoor environment quality -Sustainable solar energy systems -Application of solar energy sources in buildings -Photovoltaics systems -Building-integrated photovoltaics -Concentrator technology -Concentrator photovoltaic -Solar thermal