{"title":"作用谱表征了闭合接触3流形,它们的Reeb轨道都是闭合的","authors":"Daniel Cristofaro-Gardiner, M. Mazzucchelli","doi":"10.4171/CMH/493","DOIUrl":null,"url":null,"abstract":"A classical theorem due to Wadsley implies that, on a connected contact manifold all of whose Reeb orbits are closed, there is a common period for the Reeb orbits. In this paper we show that, for any Reeb flow on a closed connected 3-manifold, the following conditions are actually equivalent: (1) every Reeb orbit is closed; (2) all closed Reeb orbits have a common period; (3) the action spectrum has rank 1. We also show that, on a fixed closed connected 3-manifold, a contact form with an action spectrum of rank 1 is determined (up to pull-back by diffeomorphisms) by the set of minimal periods of its closed Reeb orbits.","PeriodicalId":50664,"journal":{"name":"Commentarii Mathematici Helvetici","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/CMH/493","citationCount":"15","resultStr":"{\"title\":\"The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed\",\"authors\":\"Daniel Cristofaro-Gardiner, M. Mazzucchelli\",\"doi\":\"10.4171/CMH/493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A classical theorem due to Wadsley implies that, on a connected contact manifold all of whose Reeb orbits are closed, there is a common period for the Reeb orbits. In this paper we show that, for any Reeb flow on a closed connected 3-manifold, the following conditions are actually equivalent: (1) every Reeb orbit is closed; (2) all closed Reeb orbits have a common period; (3) the action spectrum has rank 1. We also show that, on a fixed closed connected 3-manifold, a contact form with an action spectrum of rank 1 is determined (up to pull-back by diffeomorphisms) by the set of minimal periods of its closed Reeb orbits.\",\"PeriodicalId\":50664,\"journal\":{\"name\":\"Commentarii Mathematici Helvetici\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4171/CMH/493\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Commentarii Mathematici Helvetici\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/CMH/493\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Commentarii Mathematici Helvetici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/CMH/493","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed
A classical theorem due to Wadsley implies that, on a connected contact manifold all of whose Reeb orbits are closed, there is a common period for the Reeb orbits. In this paper we show that, for any Reeb flow on a closed connected 3-manifold, the following conditions are actually equivalent: (1) every Reeb orbit is closed; (2) all closed Reeb orbits have a common period; (3) the action spectrum has rank 1. We also show that, on a fixed closed connected 3-manifold, a contact form with an action spectrum of rank 1 is determined (up to pull-back by diffeomorphisms) by the set of minimal periods of its closed Reeb orbits.
期刊介绍:
Commentarii Mathematici Helvetici (CMH) was established on the occasion of a meeting of the Swiss Mathematical Society in May 1928. The first volume was published in 1929. The journal soon gained international reputation and is one of the world''s leading mathematical periodicals.
Commentarii Mathematici Helvetici is covered in:
Mathematical Reviews (MR), Current Mathematical Publications (CMP), MathSciNet, Zentralblatt für Mathematik, Zentralblatt MATH Database, Science Citation Index (SCI), Science Citation Index Expanded (SCIE), CompuMath Citation Index (CMCI), Current Contents/Physical, Chemical & Earth Sciences (CC/PC&ES), ISI Alerting Services, Journal Citation Reports/Science Edition, Web of Science.