用静态离散弹性杆法分析弹性细长结构的分岔及稳定性

IF 2.6 4区 工程技术 Q2 MECHANICS
Weicheng Huang, Yingchao Zhang, T. Yu, Mingchao Liu
{"title":"用静态离散弹性杆法分析弹性细长结构的分岔及稳定性","authors":"Weicheng Huang, Yingchao Zhang, T. Yu, Mingchao Liu","doi":"10.1115/1.4062533","DOIUrl":null,"url":null,"abstract":"\n Discrete Elastic Rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e. bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures -- beams, strips, and gridshells -- are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.","PeriodicalId":54880,"journal":{"name":"Journal of Applied Mechanics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bifurcations and stability analysis of elastic slender structures using static discrete elastic rods method\",\"authors\":\"Weicheng Huang, Yingchao Zhang, T. Yu, Mingchao Liu\",\"doi\":\"10.1115/1.4062533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Discrete Elastic Rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e. bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures -- beams, strips, and gridshells -- are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.\",\"PeriodicalId\":54880,\"journal\":{\"name\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062533\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062533","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3

摘要

离散弹性杆(DER)方法为模拟一维细长结构的非线性动力学提供了一种计算效率高的方法。然而,这种基于动态的框架与动态松弛方法相结合,只能提供一阶稳定平衡构型,而无法获得不稳定平衡和潜在临界点(即分岔点和折弯点),这对于理解细长体的分岔和稳定景观具有重要意义。该方法将现有的DER技术从动态模拟改进为静态框架,并在每个载荷增量步骤后计算切向刚度矩阵的特征值和特征向量,用于分岔和稳定性分析。这种处理方法可以捕获稳定和不稳定的平衡模式、临界点和痕量溶液曲线。三种具有代表性的结构类型——梁、条和网格壳——被用作演示,以显示改进的数值框架的有效性,它为揭示细长结构的分岔和多稳定行为提供了一个强大的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bifurcations and stability analysis of elastic slender structures using static discrete elastic rods method
Discrete Elastic Rods (DER) method provides a computationally efficient means of simulating the nonlinear dynamics of one-dimensional slender structures. However, this dynamic-based framework can only provide first-order stable equilibrium configuration when combined with the dynamic relaxation method, while the unstable equilibria and potential critical points (i.e. bifurcation and fold point) cannot be obtained, which are important for understanding the bifurcation and stability landscape of slender bodies. Our approach modifies the existing DER technique from dynamic simulation to a static framework and computes eigenvalues and eigenvectors of the tangential stiffness matrix after each load incremental step for bifurcation and stability analysis. This treatment can capture both stable and unstable equilibrium modes, critical points, and trace solution curves. Three representative types of structures -- beams, strips, and gridshells -- are used as demonstrations to show the effectiveness of the modified numerical framework, which provides a robust tool for unveiling the bifurcation and multistable behaviors of slender structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
3.80%
发文量
95
审稿时长
5.8 months
期刊介绍: All areas of theoretical and applied mechanics including, but not limited to: Aerodynamics; Aeroelasticity; Biomechanics; Boundary layers; Composite materials; Computational mechanics; Constitutive modeling of materials; Dynamics; Elasticity; Experimental mechanics; Flow and fracture; Heat transport in fluid flows; Hydraulics; Impact; Internal flow; Mechanical properties of materials; Mechanics of shocks; Micromechanics; Nanomechanics; Plasticity; Stress analysis; Structures; Thermodynamics of materials and in flowing fluids; Thermo-mechanics; Turbulence; Vibration; Wave propagation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信