{"title":"感知音乐复杂性的信息理论建模","authors":"Sarah A. Sauvé, M. Pearce","doi":"10.1525/mp.2019.37.2.165","DOIUrl":null,"url":null,"abstract":"What makes a piece of music appear complex to a listener? This research extends previous work by Eerola (2016), examining information content generated by a computational model of auditory expectation (IDyOM) based on statistical learning and probabilistic prediction as an empirical definition of perceived musical complexity. We systematically manipulated the melody, rhythm, and harmony of short polyphonic musical excerpts using the model to ensure that these manipulations systematically varied information content in the intended direction. Complexity ratings collected from 28 participants were found to positively correlate most strongly with melodic and harmonic information content, which corresponded to descriptive musical features such as the proportion of out-of-key notes and tonal ambiguity. When individual differences were considered, these explained more variance than the manipulated predictors. Musical background was not a significant predictor of complexity ratings. The results support information content, as implemented by IDyOM, as an information-theoretic measure of complexity as well as extending IDyOM9s range of applications to perceived complexity.","PeriodicalId":47786,"journal":{"name":"Music Perception","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1525/mp.2019.37.2.165","citationCount":"4","resultStr":"{\"title\":\"Information-theoretic Modeling of Perceived Musical Complexity\",\"authors\":\"Sarah A. Sauvé, M. Pearce\",\"doi\":\"10.1525/mp.2019.37.2.165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What makes a piece of music appear complex to a listener? This research extends previous work by Eerola (2016), examining information content generated by a computational model of auditory expectation (IDyOM) based on statistical learning and probabilistic prediction as an empirical definition of perceived musical complexity. We systematically manipulated the melody, rhythm, and harmony of short polyphonic musical excerpts using the model to ensure that these manipulations systematically varied information content in the intended direction. Complexity ratings collected from 28 participants were found to positively correlate most strongly with melodic and harmonic information content, which corresponded to descriptive musical features such as the proportion of out-of-key notes and tonal ambiguity. When individual differences were considered, these explained more variance than the manipulated predictors. Musical background was not a significant predictor of complexity ratings. The results support information content, as implemented by IDyOM, as an information-theoretic measure of complexity as well as extending IDyOM9s range of applications to perceived complexity.\",\"PeriodicalId\":47786,\"journal\":{\"name\":\"Music Perception\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1525/mp.2019.37.2.165\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Music Perception\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1525/mp.2019.37.2.165\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MUSIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Music Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1525/mp.2019.37.2.165","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MUSIC","Score":null,"Total":0}
Information-theoretic Modeling of Perceived Musical Complexity
What makes a piece of music appear complex to a listener? This research extends previous work by Eerola (2016), examining information content generated by a computational model of auditory expectation (IDyOM) based on statistical learning and probabilistic prediction as an empirical definition of perceived musical complexity. We systematically manipulated the melody, rhythm, and harmony of short polyphonic musical excerpts using the model to ensure that these manipulations systematically varied information content in the intended direction. Complexity ratings collected from 28 participants were found to positively correlate most strongly with melodic and harmonic information content, which corresponded to descriptive musical features such as the proportion of out-of-key notes and tonal ambiguity. When individual differences were considered, these explained more variance than the manipulated predictors. Musical background was not a significant predictor of complexity ratings. The results support information content, as implemented by IDyOM, as an information-theoretic measure of complexity as well as extending IDyOM9s range of applications to perceived complexity.
期刊介绍:
Music Perception charts the ongoing scholarly discussion and study of musical phenomena. Publishing original empirical and theoretical papers, methodological articles and critical reviews from renowned scientists and musicians, Music Perception is a repository of insightful research. The broad range of disciplines covered in the journal includes: •Psychology •Psychophysics •Linguistics •Neurology •Neurophysiology •Artificial intelligence •Computer technology •Physical and architectural acoustics •Music theory