关于一般分配方案中标记单元集中的多个粒子

IF 0.3 Q4 MATHEMATICS, APPLIED
A. Chuprunov
{"title":"关于一般分配方案中标记单元集中的多个粒子","authors":"A. Chuprunov","doi":"10.1515/dma-2023-0014","DOIUrl":null,"url":null,"abstract":"Abstract In a generalized allocation scheme of n particles over N cells we consider the random variable ηn,N(K) which is the number of particles in a given set consisting of K cells. We prove that if n, K, N → ∞, then under some conditions random variables ηn,N(K) are asymptotically normal, and under another conditions ηn,N(K) converge in distribution to a Poisson random variable. For the case when N → ∞ and n is a fixed number, we find conditions under which ηn,N(K) converge in distribution to a binomial random variable with parameters n and s = KN $\\begin{array}{} \\displaystyle \\frac{K}{N} \\end{array}$, 0 < K < N, multiplied by a integer coefficient. It is shown that if for a generalized allocation scheme of n particles over N cells with random variables having a power series distribution defined by the function B(β) = ln(1 − β) the conditions n, N, K → ∞, KN $\\begin{array}{} \\displaystyle \\frac{K}{N} \\end{array}$ → s, N = γ ln(n) + o(ln(n)), where 0 < s < 1, 0 < γ < ∞, are satisfied, then distributions of random variables ηn,N(K)n $\\begin{array}{} \\displaystyle \\frac{\\eta_{n,N}(K)}{n} \\end{array}$ converge to a beta-distribution with parameters sγ and (1 − s)γ.","PeriodicalId":11287,"journal":{"name":"Discrete Mathematics and Applications","volume":"33 1","pages":"157 - 165"},"PeriodicalIF":0.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a number of particles in a marked set of cells in a general allocation scheme\",\"authors\":\"A. Chuprunov\",\"doi\":\"10.1515/dma-2023-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a generalized allocation scheme of n particles over N cells we consider the random variable ηn,N(K) which is the number of particles in a given set consisting of K cells. We prove that if n, K, N → ∞, then under some conditions random variables ηn,N(K) are asymptotically normal, and under another conditions ηn,N(K) converge in distribution to a Poisson random variable. For the case when N → ∞ and n is a fixed number, we find conditions under which ηn,N(K) converge in distribution to a binomial random variable with parameters n and s = KN $\\\\begin{array}{} \\\\displaystyle \\\\frac{K}{N} \\\\end{array}$, 0 < K < N, multiplied by a integer coefficient. It is shown that if for a generalized allocation scheme of n particles over N cells with random variables having a power series distribution defined by the function B(β) = ln(1 − β) the conditions n, N, K → ∞, KN $\\\\begin{array}{} \\\\displaystyle \\\\frac{K}{N} \\\\end{array}$ → s, N = γ ln(n) + o(ln(n)), where 0 < s < 1, 0 < γ < ∞, are satisfied, then distributions of random variables ηn,N(K)n $\\\\begin{array}{} \\\\displaystyle \\\\frac{\\\\eta_{n,N}(K)}{n} \\\\end{array}$ converge to a beta-distribution with parameters sγ and (1 − s)γ.\",\"PeriodicalId\":11287,\"journal\":{\"name\":\"Discrete Mathematics and Applications\",\"volume\":\"33 1\",\"pages\":\"157 - 165\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/dma-2023-0014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/dma-2023-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要在n个单元上的n个粒子的广义分配方案中,我们考虑随机变量ηn,n(K),它是由K个单元组成的给定集合中的粒子数。我们证明了如果n,K,n→ ∞, 则在某些条件下,随机变量ηn,n(K)是渐近正态的,在另一个条件下,ηn,n(K)在分布上收敛为泊松随机变量。对于N→ ∞ 当n是一个固定数时,我们发现ηn,n(K)在分布中收敛于一个参数为n的二项式随机变量的条件,s=KN$\beagin{array}{}\displaystyle\frac{K}{n}\end{array}$,0<K<n,乘以一个整数系数。结果表明,对于具有幂级数分布的随机变量的n个单元上的n个粒子的广义分配方案,如果函数B(β)=ln(1−β)定义了条件n,n,K→ ∞, KN$\begin{array}{}\displaystyle\frac{K}{→ s、 N=γln(N)+o(ln(N。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a number of particles in a marked set of cells in a general allocation scheme
Abstract In a generalized allocation scheme of n particles over N cells we consider the random variable ηn,N(K) which is the number of particles in a given set consisting of K cells. We prove that if n, K, N → ∞, then under some conditions random variables ηn,N(K) are asymptotically normal, and under another conditions ηn,N(K) converge in distribution to a Poisson random variable. For the case when N → ∞ and n is a fixed number, we find conditions under which ηn,N(K) converge in distribution to a binomial random variable with parameters n and s = KN $\begin{array}{} \displaystyle \frac{K}{N} \end{array}$, 0 < K < N, multiplied by a integer coefficient. It is shown that if for a generalized allocation scheme of n particles over N cells with random variables having a power series distribution defined by the function B(β) = ln(1 − β) the conditions n, N, K → ∞, KN $\begin{array}{} \displaystyle \frac{K}{N} \end{array}$ → s, N = γ ln(n) + o(ln(n)), where 0 < s < 1, 0 < γ < ∞, are satisfied, then distributions of random variables ηn,N(K)n $\begin{array}{} \displaystyle \frac{\eta_{n,N}(K)}{n} \end{array}$ converge to a beta-distribution with parameters sγ and (1 − s)γ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
20.00%
发文量
29
期刊介绍: The aim of this journal is to provide the latest information on the development of discrete mathematics in the former USSR to a world-wide readership. The journal will contain papers from the Russian-language journal Diskretnaya Matematika, the only journal of the Russian Academy of Sciences devoted to this field of mathematics. Discrete Mathematics and Applications will cover various subjects in the fields such as combinatorial analysis, graph theory, functional systems theory, cryptology, coding, probabilistic problems of discrete mathematics, algorithms and their complexity, combinatorial and computational problems of number theory and of algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信