\(C_2\) -曲面与\({\underline{{\mathbb {Z}}}}\) -系数的上同调

IF 0.5 4区 数学
Christy Hazel
{"title":"\\(C_2\\) -曲面与\\({\\underline{{\\mathbb {Z}}}}\\) -系数的上同调","authors":"Christy Hazel","doi":"10.1007/s40062-022-00321-y","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(C_2\\)</span> denote the cyclic group of order 2. We compute the <span>\\(RO(C_2)\\)</span>-graded cohomology of all <span>\\(C_2\\)</span>-surfaces with constant integral coefficients. We show when the action is nonfree, the answer depends only on the genus, the orientability of the underlying surface, the number of isolated fixed points, the number of fixed circles with trivial normal bundles, and the number of fixed circles with nontrivial normal bundles. When the action on the surface is free, we show the answer depends only on the genus, the orientability of the underlying surface, whether or not the action preserves the orientation, and one other invariant.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"18 1","pages":"71 - 114"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cohomology of \\\\(C_2\\\\)-surfaces with \\\\({\\\\underline{{\\\\mathbb {Z}}}}\\\\)-coefficients\",\"authors\":\"Christy Hazel\",\"doi\":\"10.1007/s40062-022-00321-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(C_2\\\\)</span> denote the cyclic group of order 2. We compute the <span>\\\\(RO(C_2)\\\\)</span>-graded cohomology of all <span>\\\\(C_2\\\\)</span>-surfaces with constant integral coefficients. We show when the action is nonfree, the answer depends only on the genus, the orientability of the underlying surface, the number of isolated fixed points, the number of fixed circles with trivial normal bundles, and the number of fixed circles with nontrivial normal bundles. When the action on the surface is free, we show the answer depends only on the genus, the orientability of the underlying surface, whether or not the action preserves the orientation, and one other invariant.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"18 1\",\"pages\":\"71 - 114\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-022-00321-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-022-00321-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设\(C_2\)表示2阶的循环群。我们计算了所有具有常积分系数的\(C_2\) -曲面的\(RO(C_2)\) -梯度上同调。我们证明了当作用是非自由时,答案仅取决于格,下表面的可定向性,孤立不动点的数量,具有平凡法向束的固定圆的数量,以及具有非平凡法向束的固定圆的数量。当表面上的作用是自由的,我们证明了答案仅取决于格,下表面的定向性,作用是否保持定向,以及另一个不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The cohomology of \(C_2\)-surfaces with \({\underline{{\mathbb {Z}}}}\)-coefficients

The cohomology of \(C_2\)-surfaces with \({\underline{{\mathbb {Z}}}}\)-coefficients

Let \(C_2\) denote the cyclic group of order 2. We compute the \(RO(C_2)\)-graded cohomology of all \(C_2\)-surfaces with constant integral coefficients. We show when the action is nonfree, the answer depends only on the genus, the orientability of the underlying surface, the number of isolated fixed points, the number of fixed circles with trivial normal bundles, and the number of fixed circles with nontrivial normal bundles. When the action on the surface is free, we show the answer depends only on the genus, the orientability of the underlying surface, whether or not the action preserves the orientation, and one other invariant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信