S. Tchoumi, Y. T. Kouakep, D. Fotsa, F. G. T. Kamba, J. Kamgang, D. Houpa
{"title":"获得疟疾免疫力的数学模型:PDE方法","authors":"S. Tchoumi, Y. T. Kouakep, D. Fotsa, F. G. T. Kamba, J. Kamgang, D. Houpa","doi":"10.11145/j.biomath.2021.07.227","DOIUrl":null,"url":null,"abstract":"We develop a new model of integro-differential equations coupled with a partial differential equation that focuses on the study of the? naturally acquiring immunity to malaria induced by exposure to infection. We analyze a continuous acquisition of immunity after infected individuals are treated. It exhibits complex and realistic mechanisms precised mathematically in both disease free or endemic context and in several numerical simulations showing the interplay between infection through the bite of mosquitoes. The model confirms the (partial) premunition of the human population in the regions where malaria is endemic. As common in literature, we indicate an equivalence of the basic reproduction rate as the spectral radius of a next generation operator.","PeriodicalId":52247,"journal":{"name":"Biomath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mathematical model for acquiring immunity to malaria: a PDE approach\",\"authors\":\"S. Tchoumi, Y. T. Kouakep, D. Fotsa, F. G. T. Kamba, J. Kamgang, D. Houpa\",\"doi\":\"10.11145/j.biomath.2021.07.227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new model of integro-differential equations coupled with a partial differential equation that focuses on the study of the? naturally acquiring immunity to malaria induced by exposure to infection. We analyze a continuous acquisition of immunity after infected individuals are treated. It exhibits complex and realistic mechanisms precised mathematically in both disease free or endemic context and in several numerical simulations showing the interplay between infection through the bite of mosquitoes. The model confirms the (partial) premunition of the human population in the regions where malaria is endemic. As common in literature, we indicate an equivalence of the basic reproduction rate as the spectral radius of a next generation operator.\",\"PeriodicalId\":52247,\"journal\":{\"name\":\"Biomath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11145/j.biomath.2021.07.227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/j.biomath.2021.07.227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Mathematical model for acquiring immunity to malaria: a PDE approach
We develop a new model of integro-differential equations coupled with a partial differential equation that focuses on the study of the? naturally acquiring immunity to malaria induced by exposure to infection. We analyze a continuous acquisition of immunity after infected individuals are treated. It exhibits complex and realistic mechanisms precised mathematically in both disease free or endemic context and in several numerical simulations showing the interplay between infection through the bite of mosquitoes. The model confirms the (partial) premunition of the human population in the regions where malaria is endemic. As common in literature, we indicate an equivalence of the basic reproduction rate as the spectral radius of a next generation operator.