{"title":"图的(连通)2因子存在的禁止子图","authors":"Xiaojing Yang, Liming Xiong","doi":"10.7151/dmgt.2366","DOIUrl":null,"url":null,"abstract":"Abstract Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2-factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forbidden Subgraphs for Existences of (Connected) 2-Factors of a Graph\",\"authors\":\"Xiaojing Yang, Liming Xiong\",\"doi\":\"10.7151/dmgt.2366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2-factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7151/dmgt.2366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7151/dmgt.2366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Forbidden Subgraphs for Existences of (Connected) 2-Factors of a Graph
Abstract Clearly, having a 2-factor in a graph is a necessary condition for a graph to be hamiltonian, while having an even factor in graph is a necessary condition for a graph to have a 2-factor. In this paper, we completely characterize the forbidden subgraph and pairs of forbidden subgraphs that force a 2-connected graph admitting a 2-factor (a necessary condition) to be hamiltonian and a connected graph with an even factor (a necessary condition) to have a 2-factor, respectively. Our results show that these pairs of forbidden subgraphs become wider than those in Faudree, Gould and in Fujisawa, Saito, respectively, if we impose the two necessary conditions, respectively.