{"title":"估计二项式比例的倒数","authors":"Jiajin Wei, Ping He, Tiejun Tong","doi":"10.1111/insr.12539","DOIUrl":null,"url":null,"abstract":"<p>The binomial proportion is a classic parameter with many applications and has also been extensively studied in the literature. By contrast, the reciprocal of the binomial proportion, or the inverse proportion, is often overlooked, even though it also plays an important role in various fields. To estimate the inverse proportion, the maximum likelihood method fails to yield a valid estimate when there is no successful event in the Bernoulli trials. To overcome this zero-event problem, several methods have been introduced in the previous literature. Yet to the best of our knowledge, there is little work on a theoretical comparison of the existing estimators. In this paper, we first review some commonly used estimators for the inverse proportion, study their asymptotic properties, and then develop a new estimator that aims to eliminate the estimation bias. We further conduct Monte Carlo simulations to compare the finite sample performance of the existing and new estimators, and also apply them to handle the zero-event problem in a meta-analysis of COVID-19 data for assessing the relative risks of physical distancing on the infection of coronavirus.</p>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12539","citationCount":"0","resultStr":"{\"title\":\"Estimating the Reciprocal of a Binomial Proportion\",\"authors\":\"Jiajin Wei, Ping He, Tiejun Tong\",\"doi\":\"10.1111/insr.12539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The binomial proportion is a classic parameter with many applications and has also been extensively studied in the literature. By contrast, the reciprocal of the binomial proportion, or the inverse proportion, is often overlooked, even though it also plays an important role in various fields. To estimate the inverse proportion, the maximum likelihood method fails to yield a valid estimate when there is no successful event in the Bernoulli trials. To overcome this zero-event problem, several methods have been introduced in the previous literature. Yet to the best of our knowledge, there is little work on a theoretical comparison of the existing estimators. In this paper, we first review some commonly used estimators for the inverse proportion, study their asymptotic properties, and then develop a new estimator that aims to eliminate the estimation bias. We further conduct Monte Carlo simulations to compare the finite sample performance of the existing and new estimators, and also apply them to handle the zero-event problem in a meta-analysis of COVID-19 data for assessing the relative risks of physical distancing on the infection of coronavirus.</p>\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/insr.12539\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12539\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12539","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Estimating the Reciprocal of a Binomial Proportion
The binomial proportion is a classic parameter with many applications and has also been extensively studied in the literature. By contrast, the reciprocal of the binomial proportion, or the inverse proportion, is often overlooked, even though it also plays an important role in various fields. To estimate the inverse proportion, the maximum likelihood method fails to yield a valid estimate when there is no successful event in the Bernoulli trials. To overcome this zero-event problem, several methods have been introduced in the previous literature. Yet to the best of our knowledge, there is little work on a theoretical comparison of the existing estimators. In this paper, we first review some commonly used estimators for the inverse proportion, study their asymptotic properties, and then develop a new estimator that aims to eliminate the estimation bias. We further conduct Monte Carlo simulations to compare the finite sample performance of the existing and new estimators, and also apply them to handle the zero-event problem in a meta-analysis of COVID-19 data for assessing the relative risks of physical distancing on the infection of coronavirus.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.