分数积分加性噪声驱动的随机双线性次扩散和超扩散的强逼近

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ye Hu, Yubin Yan, Shahzad Sarwar
{"title":"分数积分加性噪声驱动的随机双线性次扩散和超扩散的强逼近","authors":"Ye Hu, Yubin Yan, Shahzad Sarwar","doi":"10.1002/num.23068","DOIUrl":null,"url":null,"abstract":"Recently, Kovács et al. considered a Mittag‐Leffler Euler integrator for a stochastic semilinear Volterra integral‐differential equation with additive noise and proved the strong convergence error estimates [see SIAM J. Numer. Anal. 58(1) 2020, pp. 66‐85]. In this article, we shall consider the Mittag‐Leffler integrators for more general models: stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise. The mild solutions of our models involve four different Mittag‐Leffler functions. We first consider the existence, uniqueness and the regularities of the solutions. We then introduce the full discretization schemes for solving the problems. The temporal discretization is based on the Mittag‐Leffler integrators and the spatial discretization is based on the spectral method. The optimal strong convergence error estimates are proved under the reasonable assumptions for the semilinear term and for the regularity of the noise. Numerical examples are given to show that the numerical results are consistent with the theoretical results.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong approximation of stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise\",\"authors\":\"Ye Hu, Yubin Yan, Shahzad Sarwar\",\"doi\":\"10.1002/num.23068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Kovács et al. considered a Mittag‐Leffler Euler integrator for a stochastic semilinear Volterra integral‐differential equation with additive noise and proved the strong convergence error estimates [see SIAM J. Numer. Anal. 58(1) 2020, pp. 66‐85]. In this article, we shall consider the Mittag‐Leffler integrators for more general models: stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise. The mild solutions of our models involve four different Mittag‐Leffler functions. We first consider the existence, uniqueness and the regularities of the solutions. We then introduce the full discretization schemes for solving the problems. The temporal discretization is based on the Mittag‐Leffler integrators and the spatial discretization is based on the spectral method. The optimal strong convergence error estimates are proved under the reasonable assumptions for the semilinear term and for the regularity of the noise. Numerical examples are given to show that the numerical results are consistent with the theoretical results.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/num.23068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/num.23068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最近,Kovács等人考虑了具有加性噪声的随机双线性Volterra积分微分方程的Mittag‐Leffler Euler积分器,并证明了强收敛误差估计[见SIAM J.Numer.Anal.58(1)2020,pp.66‐85]。在本文中,我们将考虑更一般模型的Mittag‐Leffler积分器:分数积分加性噪声驱动的随机双线性次扩散和超扩散。我们模型的温和解涉及四个不同的Mittag-Leffler函数。我们首先考虑解的存在性、唯一性和规律性。然后,我们介绍了用于解决这些问题的完全离散化方案。时间离散化基于Mittag‐Leffler积分器,空间离散化基于谱方法。在对双线性项和噪声正则性的合理假设下,证明了最优强收敛误差估计。数值算例表明,数值结果与理论结果相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strong approximation of stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise
Recently, Kovács et al. considered a Mittag‐Leffler Euler integrator for a stochastic semilinear Volterra integral‐differential equation with additive noise and proved the strong convergence error estimates [see SIAM J. Numer. Anal. 58(1) 2020, pp. 66‐85]. In this article, we shall consider the Mittag‐Leffler integrators for more general models: stochastic semilinear subdiffusion and superdiffusion driven by fractionally integrated additive noise. The mild solutions of our models involve four different Mittag‐Leffler functions. We first consider the existence, uniqueness and the regularities of the solutions. We then introduce the full discretization schemes for solving the problems. The temporal discretization is based on the Mittag‐Leffler integrators and the spatial discretization is based on the spectral method. The optimal strong convergence error estimates are proved under the reasonable assumptions for the semilinear term and for the regularity of the noise. Numerical examples are given to show that the numerical results are consistent with the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信