具有右右Garside族的一元群的连贯表示

IF 0.5 4区 数学
Pierre-Louis Curien, Alen Ɖurić, Yves Guiraud
{"title":"具有右右Garside族的一元群的连贯表示","authors":"Pierre-Louis Curien,&nbsp;Alen Ɖurić,&nbsp;Yves Guiraud","doi":"10.1007/s40062-023-00323-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper shows how to construct coherent presentations (presentations by generators, relations and relations among relations) of monoids admitting a right-noetherian Garside family. Thereby, it resolves the question of finding a unifying generalisation of the following two distinct extensions of construction of coherent presentations for Artin-Tits monoids of spherical type: to general Artin-Tits monoids, and to Garside monoids. The result is applied to some monoids which are neither Artin-Tits nor Garside.</p></div>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"18 1","pages":"115 - 152"},"PeriodicalIF":0.5000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coherent presentations of monoids with a right-noetherian Garside family\",\"authors\":\"Pierre-Louis Curien,&nbsp;Alen Ɖurić,&nbsp;Yves Guiraud\",\"doi\":\"10.1007/s40062-023-00323-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper shows how to construct coherent presentations (presentations by generators, relations and relations among relations) of monoids admitting a right-noetherian Garside family. Thereby, it resolves the question of finding a unifying generalisation of the following two distinct extensions of construction of coherent presentations for Artin-Tits monoids of spherical type: to general Artin-Tits monoids, and to Garside monoids. The result is applied to some monoids which are neither Artin-Tits nor Garside.</p></div>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"18 1\",\"pages\":\"115 - 152\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-023-00323-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-023-00323-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文讨论了如何构造承认右noether Garside族的一元群的连贯表示(生成表示、关系表示和关系间关系表示)。因此,它解决了寻找球面型Artin-Tits一元群连贯表示构造的以下两个不同扩展的统一概括的问题:一般Artin-Tits一元群和Garside一元群。结果应用于一些既不是Artin-Tits也不是Garside的monoids。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent presentations of monoids with a right-noetherian Garside family

This paper shows how to construct coherent presentations (presentations by generators, relations and relations among relations) of monoids admitting a right-noetherian Garside family. Thereby, it resolves the question of finding a unifying generalisation of the following two distinct extensions of construction of coherent presentations for Artin-Tits monoids of spherical type: to general Artin-Tits monoids, and to Garside monoids. The result is applied to some monoids which are neither Artin-Tits nor Garside.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信