Gong Cheng, Chunbo Lang, Maoxiong Wu, Xingxing Xie, Xiwen Yao, Junwei Han
{"title":"用于光学遥感图像目标检测的特征增强网络","authors":"Gong Cheng, Chunbo Lang, Maoxiong Wu, Xingxing Xie, Xiwen Yao, Junwei Han","doi":"10.34133/2021/9805389","DOIUrl":null,"url":null,"abstract":"Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Feature Enhancement Network for Object Detection in Optical Remote Sensing Images\",\"authors\":\"Gong Cheng, Chunbo Lang, Maoxiong Wu, Xingxing Xie, Xiwen Yao, Junwei Han\",\"doi\":\"10.34133/2021/9805389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.\",\"PeriodicalId\":38304,\"journal\":{\"name\":\"遥感学报\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"遥感学报\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.34133/2021/9805389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2021/9805389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Enhancement Network for Object Detection in Optical Remote Sensing Images
Automatic and robust object detection in remote sensing images is of vital significance in real-world applications such as land resource management and disaster rescue. However, poor performance arises when the state-of-the-art natural image detection algorithms are directly applied to remote sensing images, which largely results from the variations in object scale, aspect ratio, indistinguishable object appearances, and complex background scenario. In this paper, we propose a novel Feature Enhancement Network (FENet) for object detection in optical remote sensing images, which consists of a Dual Attention Feature Enhancement (DAFE) module and a Context Feature Enhancement (CFE) module. Specifically, the DAFE module is introduced to highlight the network to focus on the distinctive features of the objects of interest and suppress useless ones by jointly recalibrating the spatial and channel feature responses. The CFE module is designed to capture global context cues and selectively strengthen class-aware features by leveraging image-level contextual information that indicates the presence or absence of the object classes. To this end, we employ a context encoding loss to regularize the model training which promotes the object detector to understand the scene better and narrows the probable object categories in prediction. We achieve our proposed FENet by unifying DAFE and CFE into the framework of Faster R-CNN. In the experiments, we evaluate our proposed method on two large-scale remote sensing image object detection datasets including DIOR and DOTA and demonstrate its effectiveness compared with the baseline methods.