{"title":"含隐粘性不可压缩Navier-Stokes方程的高阶有限差分/不连续Galerkin格式","authors":"W. Boscheri, M. Tavelli, Nicola Paoluzzi","doi":"10.2478/caim-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract In this work we propose a novel numerical method for the solution of the incompressible Navier-Stokes equations on Cartesian meshes in 3D. The semi-discrete scheme is based on an explicit discretization of the nonlinear convective flux tensor and an implicit treatment of the pressure gradient and viscous terms. In this way, the momentum equation is formally substituted into the divergence-free constraint, thus obtaining an elliptic equation on the pressure which eventually maintains at the discrete level the involution on the divergence of the velocity field imposed by the governing equations. This makes our method belonging to the class of so-called structure-preserving schemes. High order of accuracy in space is achieved using an efficient CWENO reconstruction operator that is exploited to devise a conservative finite difference scheme for the convective terms. Implicit central finite differences are used to remove the numerical dissipation in the pressure gradient discretization. To avoid the severe time step limitation induced by the viscous eigenvalues related to the parabolic terms in the governing equations, we propose to devise an implicit local discontinuous Galerkin (DG) solver. The resulting viscous sub-system is symmetric and positive definite, therefore it can be efficiently solved at the aid of a matrix-free conjugate gradient method. High order in time is granted by a semi-implicit IMEX time stepping technique. Convergence rates up to third order of accuracy in space and time are proven, and a suite of academic benchmarks is shown in order to demonstrate the robustness and the validity of the novel schemes, especially in the context of high viscosity coefficients.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"13 1","pages":"21 - 38"},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"High order Finite Difference/Discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity\",\"authors\":\"W. Boscheri, M. Tavelli, Nicola Paoluzzi\",\"doi\":\"10.2478/caim-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we propose a novel numerical method for the solution of the incompressible Navier-Stokes equations on Cartesian meshes in 3D. The semi-discrete scheme is based on an explicit discretization of the nonlinear convective flux tensor and an implicit treatment of the pressure gradient and viscous terms. In this way, the momentum equation is formally substituted into the divergence-free constraint, thus obtaining an elliptic equation on the pressure which eventually maintains at the discrete level the involution on the divergence of the velocity field imposed by the governing equations. This makes our method belonging to the class of so-called structure-preserving schemes. High order of accuracy in space is achieved using an efficient CWENO reconstruction operator that is exploited to devise a conservative finite difference scheme for the convective terms. Implicit central finite differences are used to remove the numerical dissipation in the pressure gradient discretization. To avoid the severe time step limitation induced by the viscous eigenvalues related to the parabolic terms in the governing equations, we propose to devise an implicit local discontinuous Galerkin (DG) solver. The resulting viscous sub-system is symmetric and positive definite, therefore it can be efficiently solved at the aid of a matrix-free conjugate gradient method. High order in time is granted by a semi-implicit IMEX time stepping technique. Convergence rates up to third order of accuracy in space and time are proven, and a suite of academic benchmarks is shown in order to demonstrate the robustness and the validity of the novel schemes, especially in the context of high viscosity coefficients.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"13 1\",\"pages\":\"21 - 38\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
High order Finite Difference/Discontinuous Galerkin schemes for the incompressible Navier-Stokes equations with implicit viscosity
Abstract In this work we propose a novel numerical method for the solution of the incompressible Navier-Stokes equations on Cartesian meshes in 3D. The semi-discrete scheme is based on an explicit discretization of the nonlinear convective flux tensor and an implicit treatment of the pressure gradient and viscous terms. In this way, the momentum equation is formally substituted into the divergence-free constraint, thus obtaining an elliptic equation on the pressure which eventually maintains at the discrete level the involution on the divergence of the velocity field imposed by the governing equations. This makes our method belonging to the class of so-called structure-preserving schemes. High order of accuracy in space is achieved using an efficient CWENO reconstruction operator that is exploited to devise a conservative finite difference scheme for the convective terms. Implicit central finite differences are used to remove the numerical dissipation in the pressure gradient discretization. To avoid the severe time step limitation induced by the viscous eigenvalues related to the parabolic terms in the governing equations, we propose to devise an implicit local discontinuous Galerkin (DG) solver. The resulting viscous sub-system is symmetric and positive definite, therefore it can be efficiently solved at the aid of a matrix-free conjugate gradient method. High order in time is granted by a semi-implicit IMEX time stepping technique. Convergence rates up to third order of accuracy in space and time are proven, and a suite of academic benchmarks is shown in order to demonstrate the robustness and the validity of the novel schemes, especially in the context of high viscosity coefficients.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.