等变代数理论中的刚性

IF 0.5 Q3 MATHEMATICS
N. Naumann, Charanya Ravi
{"title":"等变代数理论中的刚性","authors":"N. Naumann, Charanya Ravi","doi":"10.2140/akt.2020.5.141","DOIUrl":null,"url":null,"abstract":"If $(R,I)$ is a henselian pair with an action of a finite group $G$ and $n\\ge 1$ is an integer coprime to $|G|$ and such that $n\\cdot |G|\\in R^*$, then the reduction map of mod-$n$ equivariant $K$-theory spectra \\[ K^G(R)/n\\stackrel{\\simeq}{\\longrightarrow} K^G(R/I)/n\\] is an equivalence. We prove this by revisiting the recent proof of non-equivariant rigidity by Clausen, Mathew, and Morrow.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2020.5.141","citationCount":"2","resultStr":"{\"title\":\"Rigidity in equivariant algebraic\\nK-theory\",\"authors\":\"N. Naumann, Charanya Ravi\",\"doi\":\"10.2140/akt.2020.5.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"If $(R,I)$ is a henselian pair with an action of a finite group $G$ and $n\\\\ge 1$ is an integer coprime to $|G|$ and such that $n\\\\cdot |G|\\\\in R^*$, then the reduction map of mod-$n$ equivariant $K$-theory spectra \\\\[ K^G(R)/n\\\\stackrel{\\\\simeq}{\\\\longrightarrow} K^G(R/I)/n\\\\] is an equivalence. We prove this by revisiting the recent proof of non-equivariant rigidity by Clausen, Mathew, and Morrow.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2020.5.141\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2020.5.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2020.5.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

如果$(R,I)$是具有有限群作用的henselian对$G$, $n\ge 1$是$|G|$的整数副素数,并且$n\cdot |G|\in R^*$,则mod- $n$等变$K$ -理论谱\[ K^G(R)/n\stackrel{\simeq}{\longrightarrow} K^G(R/I)/n\]的约简映射是等价的。我们通过重温Clausen、Mathew和Morrow最近对非等变刚性的证明来证明这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity in equivariant algebraic K-theory
If $(R,I)$ is a henselian pair with an action of a finite group $G$ and $n\ge 1$ is an integer coprime to $|G|$ and such that $n\cdot |G|\in R^*$, then the reduction map of mod-$n$ equivariant $K$-theory spectra \[ K^G(R)/n\stackrel{\simeq}{\longrightarrow} K^G(R/I)/n\] is an equivalence. We prove this by revisiting the recent proof of non-equivariant rigidity by Clausen, Mathew, and Morrow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信