隐写检测:基于CNN分类的新型隐写视觉几何组的图像隐写分析

IF 1.1 Q3 CRIMINOLOGY & PENOLOGY
Hemalatha Jeyaprakash, Balachander Chokkalingam, Vivek V, S. Mohan
{"title":"隐写检测:基于CNN分类的新型隐写视觉几何组的图像隐写分析","authors":"Hemalatha Jeyaprakash, Balachander Chokkalingam, Vivek V, S. Mohan","doi":"10.1080/19361610.2022.2110637","DOIUrl":null,"url":null,"abstract":"Abstract Steganography is the concept of embedding or hiding secret information into a cover image by maintaining the visual quality. Various algorithms are designed to classify stego images but the race still continues between Steganographer and Steganalyser. Advances in deep learning provided a solution to detect stego images. In this article, we coin a new paradigm to detect stego image as a three-step process with the following repercussions: (1) employing preprocessing step to enhance the input image, (2 feature extraction using the Mustard honey bee optimization algorithm and, thus, the extracted features will be dimensionally reduced (3) by classification using HSVGG-based CNN. Experimentation carried out on ALASKA2 data set and the results were compared.","PeriodicalId":44585,"journal":{"name":"Journal of Applied Security Research","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stego Detection: Image Steganalysis Using a Novel Hidden Stego Visual Geometry Group–Based CNN Classification\",\"authors\":\"Hemalatha Jeyaprakash, Balachander Chokkalingam, Vivek V, S. Mohan\",\"doi\":\"10.1080/19361610.2022.2110637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Steganography is the concept of embedding or hiding secret information into a cover image by maintaining the visual quality. Various algorithms are designed to classify stego images but the race still continues between Steganographer and Steganalyser. Advances in deep learning provided a solution to detect stego images. In this article, we coin a new paradigm to detect stego image as a three-step process with the following repercussions: (1) employing preprocessing step to enhance the input image, (2 feature extraction using the Mustard honey bee optimization algorithm and, thus, the extracted features will be dimensionally reduced (3) by classification using HSVGG-based CNN. Experimentation carried out on ALASKA2 data set and the results were compared.\",\"PeriodicalId\":44585,\"journal\":{\"name\":\"Journal of Applied Security Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Security Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19361610.2022.2110637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRIMINOLOGY & PENOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Security Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19361610.2022.2110637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRIMINOLOGY & PENOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要隐写术是通过保持视觉质量将秘密信息嵌入或隐藏到封面图像中的概念。设计了各种算法来对隐写图像进行分类,但隐写器和隐写分析器之间的竞争仍在继续。深度学习的进步为检测隐写图像提供了一种解决方案。在本文中,我们提出了一种新的范式,将检测炖煮图像作为一个三步过程,其影响如下:(1)采用预处理步骤来增强输入图像,(2)使用芥末蜜蜂优化算法进行特征提取,因此,提取的特征将被降维(3)通过使用基于HSVGG的CNN进行分类。在ALASKA2数据集上进行的实验与结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stego Detection: Image Steganalysis Using a Novel Hidden Stego Visual Geometry Group–Based CNN Classification
Abstract Steganography is the concept of embedding or hiding secret information into a cover image by maintaining the visual quality. Various algorithms are designed to classify stego images but the race still continues between Steganographer and Steganalyser. Advances in deep learning provided a solution to detect stego images. In this article, we coin a new paradigm to detect stego image as a three-step process with the following repercussions: (1) employing preprocessing step to enhance the input image, (2 feature extraction using the Mustard honey bee optimization algorithm and, thus, the extracted features will be dimensionally reduced (3) by classification using HSVGG-based CNN. Experimentation carried out on ALASKA2 data set and the results were compared.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Security Research
Journal of Applied Security Research CRIMINOLOGY & PENOLOGY-
CiteScore
2.90
自引率
15.40%
发文量
35
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信