基于机器学习的工程地球物理探测测井解释方法

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Armand Abordán, Norbert Péter Szabó
{"title":"基于机器学习的工程地球物理探测测井解释方法","authors":"Armand Abordán,&nbsp;Norbert Péter Szabó","doi":"10.1007/s40328-021-00354-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a set of machine learning (ML) tools is applied to estimate the water saturation of shallow unconsolidated sediments at the Bátaapáti site in Hungary. Water saturation is directly calculated from the first factor extracted from a set of direct push logs by factor analysis. The dataset observed by engineering geophysical sounding tools as special variants of direct-push probes contains data from a total of 12 shallow penetration holes. Both one- and two-dimensional applications of the suggested method are presented. To improve the performance of factor analysis, particle swarm optimization (PSO) is applied to give a globally optimized estimate for the factor scores. Furthermore, by a hyperparameter estimation approach, some control parameters of the utilized PSO algorithm are automatically estimated by simulated annealing (SA) to ensure the convergence of the procedure. The result of the suggested ML-based log analysis method is compared and verified by an independent inversion estimate. The study shows that the PSO-based factor analysis aided by hyperparameter estimation provides reliable in situ estimates of water saturation, which may improve the solution of environmental end engineering problems in shallow unconsolidated heterogeneous formations.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40328-021-00354-4","citationCount":"3","resultStr":"{\"title\":\"Machine learning based approach for the interpretation of engineering geophysical sounding logs\",\"authors\":\"Armand Abordán,&nbsp;Norbert Péter Szabó\",\"doi\":\"10.1007/s40328-021-00354-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a set of machine learning (ML) tools is applied to estimate the water saturation of shallow unconsolidated sediments at the Bátaapáti site in Hungary. Water saturation is directly calculated from the first factor extracted from a set of direct push logs by factor analysis. The dataset observed by engineering geophysical sounding tools as special variants of direct-push probes contains data from a total of 12 shallow penetration holes. Both one- and two-dimensional applications of the suggested method are presented. To improve the performance of factor analysis, particle swarm optimization (PSO) is applied to give a globally optimized estimate for the factor scores. Furthermore, by a hyperparameter estimation approach, some control parameters of the utilized PSO algorithm are automatically estimated by simulated annealing (SA) to ensure the convergence of the procedure. The result of the suggested ML-based log analysis method is compared and verified by an independent inversion estimate. The study shows that the PSO-based factor analysis aided by hyperparameter estimation provides reliable in situ estimates of water saturation, which may improve the solution of environmental end engineering problems in shallow unconsolidated heterogeneous formations.</p></div>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40328-021-00354-4\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40328-021-00354-4\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-021-00354-4","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,一套机器学习(ML)工具应用于估计匈牙利Bátaapáti站点浅层松散沉积物的水饱和度。通过因子分析,从一组直推测井曲线中提取第一个因子,直接计算含水饱和度。工程地球物理探测工具观测到的数据集是直推探头的特殊变体,共包含12个浅层穿透孔的数据。给出了该方法的一维和二维应用。为了提高因子分析的性能,采用粒子群算法对因子得分进行全局优化估计。此外,采用超参数估计方法,利用模拟退火(SA)自动估计PSO算法的一些控制参数,以保证算法的收敛性。通过独立的反演估计,对所建议的基于ml的测井分析方法的结果进行了比较和验证。研究表明,基于pso的因子分析方法在超参数估计的辅助下提供了可靠的含水饱和度原位估计,可以改善浅层疏松非均质地层环境末端工程问题的解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning based approach for the interpretation of engineering geophysical sounding logs

In this paper, a set of machine learning (ML) tools is applied to estimate the water saturation of shallow unconsolidated sediments at the Bátaapáti site in Hungary. Water saturation is directly calculated from the first factor extracted from a set of direct push logs by factor analysis. The dataset observed by engineering geophysical sounding tools as special variants of direct-push probes contains data from a total of 12 shallow penetration holes. Both one- and two-dimensional applications of the suggested method are presented. To improve the performance of factor analysis, particle swarm optimization (PSO) is applied to give a globally optimized estimate for the factor scores. Furthermore, by a hyperparameter estimation approach, some control parameters of the utilized PSO algorithm are automatically estimated by simulated annealing (SA) to ensure the convergence of the procedure. The result of the suggested ML-based log analysis method is compared and verified by an independent inversion estimate. The study shows that the PSO-based factor analysis aided by hyperparameter estimation provides reliable in situ estimates of water saturation, which may improve the solution of environmental end engineering problems in shallow unconsolidated heterogeneous formations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信