{"title":"论谣言在怀疑论者中存活的可能性","authors":"N. Esmaeeli, F. Sajadi","doi":"10.1017/jpr.2022.113","DOIUrl":null,"url":null,"abstract":"Abstract We study a sceptical rumour model on the non-negative integer line. The model starts with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then each sceptic transmits the rumour, independently, to the individuals within a random distance on its right after s/he receives the rumour from at least two different sources. We say that the process survives if the size of the set of vertices which heard the rumour in this fashion is infinite. We calculate the probability of survival exactly, and obtain some bounds for the tail distribution of the final range of the rumour among sceptics. We also prove that the rumour dies out among non-sceptics and sceptics, under the same condition.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"60 1","pages":"1096 - 1111"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the probability of rumour survival among sceptics\",\"authors\":\"N. Esmaeeli, F. Sajadi\",\"doi\":\"10.1017/jpr.2022.113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study a sceptical rumour model on the non-negative integer line. The model starts with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then each sceptic transmits the rumour, independently, to the individuals within a random distance on its right after s/he receives the rumour from at least two different sources. We say that the process survives if the size of the set of vertices which heard the rumour in this fashion is infinite. We calculate the probability of survival exactly, and obtain some bounds for the tail distribution of the final range of the rumour among sceptics. We also prove that the rumour dies out among non-sceptics and sceptics, under the same condition.\",\"PeriodicalId\":50256,\"journal\":{\"name\":\"Journal of Applied Probability\",\"volume\":\"60 1\",\"pages\":\"1096 - 1111\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/jpr.2022.113\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2022.113","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
On the probability of rumour survival among sceptics
Abstract We study a sceptical rumour model on the non-negative integer line. The model starts with two spreaders at sites 0, 1 and sceptical ignorants at all other natural numbers. Then each sceptic transmits the rumour, independently, to the individuals within a random distance on its right after s/he receives the rumour from at least two different sources. We say that the process survives if the size of the set of vertices which heard the rumour in this fashion is infinite. We calculate the probability of survival exactly, and obtain some bounds for the tail distribution of the final range of the rumour among sceptics. We also prove that the rumour dies out among non-sceptics and sceptics, under the same condition.
期刊介绍:
Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used.
A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.