{"title":"新实验研究对非膨胀界面地摩擦学的新见解","authors":"L. Kandpal, P. Vangla","doi":"10.1680/jgein.23.00013","DOIUrl":null,"url":null,"abstract":"The paper presents new insights into the particle kinematics and tribological aspects and their effects on the non-dilative interface shear response from novel experimental investigations. A custom-designed apparatus that enables image analysis of particulate-continuum materials interactions from the bottom of the interface plane while shearing was developed. The effect of influential factors on the frictional mechanism, particle kinematics, and subsequently on the friction coefficient was investigated by performing experiments on three types of sands at different normal stresses with a transparent acrylic sheet and smooth geomembrane. The results demonstrated that the frictional response of the acrylic sheet and geomembrane was comparable, indicating that their particle kinematics at the interface could be similar. However, the critical normal and peak shear stresses differed due to the materials' hardness. The image and micro-topographical analysis of the tested interfaces revealed that the box fixity, particle shape, and normal stress influence particle kinematics and shear-induced surface changes. The fixed box has shown restricted particle movements compared to the conventional box. Angular and smooth spherical particles exhibited lesser kinematics despite a huge difference in the shape and shear-induced surface changes. Rough spherical particles have larger displacements and shear-induced surface changes than smooth spherical particles.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New insights into geotribology of non-dilative interfaces from novel experimental studies\",\"authors\":\"L. Kandpal, P. Vangla\",\"doi\":\"10.1680/jgein.23.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents new insights into the particle kinematics and tribological aspects and their effects on the non-dilative interface shear response from novel experimental investigations. A custom-designed apparatus that enables image analysis of particulate-continuum materials interactions from the bottom of the interface plane while shearing was developed. The effect of influential factors on the frictional mechanism, particle kinematics, and subsequently on the friction coefficient was investigated by performing experiments on three types of sands at different normal stresses with a transparent acrylic sheet and smooth geomembrane. The results demonstrated that the frictional response of the acrylic sheet and geomembrane was comparable, indicating that their particle kinematics at the interface could be similar. However, the critical normal and peak shear stresses differed due to the materials' hardness. The image and micro-topographical analysis of the tested interfaces revealed that the box fixity, particle shape, and normal stress influence particle kinematics and shear-induced surface changes. The fixed box has shown restricted particle movements compared to the conventional box. Angular and smooth spherical particles exhibited lesser kinematics despite a huge difference in the shape and shear-induced surface changes. Rough spherical particles have larger displacements and shear-induced surface changes than smooth spherical particles.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.23.00013\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.23.00013","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
New insights into geotribology of non-dilative interfaces from novel experimental studies
The paper presents new insights into the particle kinematics and tribological aspects and their effects on the non-dilative interface shear response from novel experimental investigations. A custom-designed apparatus that enables image analysis of particulate-continuum materials interactions from the bottom of the interface plane while shearing was developed. The effect of influential factors on the frictional mechanism, particle kinematics, and subsequently on the friction coefficient was investigated by performing experiments on three types of sands at different normal stresses with a transparent acrylic sheet and smooth geomembrane. The results demonstrated that the frictional response of the acrylic sheet and geomembrane was comparable, indicating that their particle kinematics at the interface could be similar. However, the critical normal and peak shear stresses differed due to the materials' hardness. The image and micro-topographical analysis of the tested interfaces revealed that the box fixity, particle shape, and normal stress influence particle kinematics and shear-induced surface changes. The fixed box has shown restricted particle movements compared to the conventional box. Angular and smooth spherical particles exhibited lesser kinematics despite a huge difference in the shape and shear-induced surface changes. Rough spherical particles have larger displacements and shear-induced surface changes than smooth spherical particles.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.