Binghui Lin, Yao Cai, Ya-xin Wang, Chao Gao, Gai Wu, Yan Liu, Wenjuan Liu, D. D. Cheam, Chengliang Sun
{"title":"两步法制备高晶体质量、低残余应力的复合压电薄膜","authors":"Binghui Lin, Yao Cai, Ya-xin Wang, Chao Gao, Gai Wu, Yan Liu, Wenjuan Liu, D. D. Cheam, Chengliang Sun","doi":"10.1088/1361-6439/acf2a8","DOIUrl":null,"url":null,"abstract":"The crystal quality and residual stress of piezoelectric films are critical factors that limit the performance of acoustic wave devices. To overcome this challenge, a new two-step method integrating metal-organic chemical vapor deposition (MOCVD) and physical vapor deposition (PVD) was presented. The lower part of the composite film was first grown by MOCVD, exhibiting monocrystalline quality and high residual stress. Subsequently, the upper part of the composite film deposited by PVD effectively compensates for the residual stress in the lower part of the composite film. The new two-step method was validated on the growth of AlN and AlScN on sapphire substrate. A composite film Al0.8Sc0.2 N/AlN was obtained with a full width at half maximum of 0.047° for AlN (002) of rocking curve, exhibiting a residual stress of +381 MPa and a surface roughness of 1.12 nm. It demonstrates the feasibility of preparing high-quality composite piezoelectric films for further acoustic applications.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High crystal quality and low residual stress composite piezoelectric films prepared by a two-step method\",\"authors\":\"Binghui Lin, Yao Cai, Ya-xin Wang, Chao Gao, Gai Wu, Yan Liu, Wenjuan Liu, D. D. Cheam, Chengliang Sun\",\"doi\":\"10.1088/1361-6439/acf2a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The crystal quality and residual stress of piezoelectric films are critical factors that limit the performance of acoustic wave devices. To overcome this challenge, a new two-step method integrating metal-organic chemical vapor deposition (MOCVD) and physical vapor deposition (PVD) was presented. The lower part of the composite film was first grown by MOCVD, exhibiting monocrystalline quality and high residual stress. Subsequently, the upper part of the composite film deposited by PVD effectively compensates for the residual stress in the lower part of the composite film. The new two-step method was validated on the growth of AlN and AlScN on sapphire substrate. A composite film Al0.8Sc0.2 N/AlN was obtained with a full width at half maximum of 0.047° for AlN (002) of rocking curve, exhibiting a residual stress of +381 MPa and a surface roughness of 1.12 nm. It demonstrates the feasibility of preparing high-quality composite piezoelectric films for further acoustic applications.\",\"PeriodicalId\":16346,\"journal\":{\"name\":\"Journal of Micromechanics and Microengineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Microengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6439/acf2a8\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/acf2a8","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
High crystal quality and low residual stress composite piezoelectric films prepared by a two-step method
The crystal quality and residual stress of piezoelectric films are critical factors that limit the performance of acoustic wave devices. To overcome this challenge, a new two-step method integrating metal-organic chemical vapor deposition (MOCVD) and physical vapor deposition (PVD) was presented. The lower part of the composite film was first grown by MOCVD, exhibiting monocrystalline quality and high residual stress. Subsequently, the upper part of the composite film deposited by PVD effectively compensates for the residual stress in the lower part of the composite film. The new two-step method was validated on the growth of AlN and AlScN on sapphire substrate. A composite film Al0.8Sc0.2 N/AlN was obtained with a full width at half maximum of 0.047° for AlN (002) of rocking curve, exhibiting a residual stress of +381 MPa and a surface roughness of 1.12 nm. It demonstrates the feasibility of preparing high-quality composite piezoelectric films for further acoustic applications.
期刊介绍:
Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data.
The journal is focussed on all aspects of:
-nano- and micro- mechanical systems
-nano- and micro- electomechanical systems
-nano- and micro- electrical and mechatronic systems
-nano- and micro- engineering
-nano- and micro- scale science
Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering.
Below are some examples of the topics that are included within the scope of the journal:
-MEMS and NEMS:
Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc.
-Fabrication techniques and manufacturing:
Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing.
-Packaging and Integration technologies.
-Materials, testing, and reliability.
-Micro- and nano-fluidics:
Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip.
-Lab-on-a-chip and micro- and nano-total analysis systems.
-Biomedical systems and devices:
Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces.
-Energy and power:
Including power MEMS/NEMS, energy harvesters, actuators, microbatteries.
-Electronics:
Including flexible electronics, wearable electronics, interface electronics.
-Optical systems.
-Robotics.