Wrońskian因式分解和Broadhurst-Mellit行列式公式

IF 1.2 3区 数学 Q1 MATHEMATICS
Yajun Zhou
{"title":"Wrońskian因式分解和Broadhurst-Mellit行列式公式","authors":"Yajun Zhou","doi":"10.4310/CNTP.2018.v12.n2.a5","DOIUrl":null,"url":null,"abstract":"Drawing on Vanhove's contributions to mixed Hodge structures for Feynman integrals in two-di\\-men\\-sion\\-al quantum field theory, we compute two families of determinants whose entries are Bessel moments. Via explicit factorizations of certain Wronskian determinants, we verify two recent conjectures proposed by Broadhurst and Mellit, concerning determinants of arbitrary sizes. With some extensions to our methods, we also relate two more determinants of Broadhurst--Mellit to the logarithmic Mahler measures of certain polynomials.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"12 1","pages":"355-407"},"PeriodicalIF":1.2000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Wrońskian factorizations and Broadhurst–Mellit determinant formulae\",\"authors\":\"Yajun Zhou\",\"doi\":\"10.4310/CNTP.2018.v12.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drawing on Vanhove's contributions to mixed Hodge structures for Feynman integrals in two-di\\\\-men\\\\-sion\\\\-al quantum field theory, we compute two families of determinants whose entries are Bessel moments. Via explicit factorizations of certain Wronskian determinants, we verify two recent conjectures proposed by Broadhurst and Mellit, concerning determinants of arbitrary sizes. With some extensions to our methods, we also relate two more determinants of Broadhurst--Mellit to the logarithmic Mahler measures of certain polynomials.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"12 1\",\"pages\":\"355-407\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CNTP.2018.v12.n2.a5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CNTP.2018.v12.n2.a5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 20

摘要

利用Vanhove对Feynman积分的混合Hodge结构的贡献,我们计算了两个以贝塞尔矩为元素的行列式族。通过对某些朗斯基行列式的显式分解,我们验证了Broadhurst和Mellit最近提出的关于任意大小行列式的两个猜想。通过对我们方法的一些扩展,我们还将Broadhurst- Mellit的另外两个行列式与某些多项式的对数马勒测度联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wrońskian factorizations and Broadhurst–Mellit determinant formulae
Drawing on Vanhove's contributions to mixed Hodge structures for Feynman integrals in two-di\-men\-sion\-al quantum field theory, we compute two families of determinants whose entries are Bessel moments. Via explicit factorizations of certain Wronskian determinants, we verify two recent conjectures proposed by Broadhurst and Mellit, concerning determinants of arbitrary sizes. With some extensions to our methods, we also relate two more determinants of Broadhurst--Mellit to the logarithmic Mahler measures of certain polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信