Medina Sianturi, N. Susilaningsih, H. Nugroho, Nyoman Suci, T. Kristina, Maria Suryani
{"title":"番茄红素联合二甲双胍对2型糖尿病大鼠吞噬、血糖控制和氧化应激的影响","authors":"Medina Sianturi, N. Susilaningsih, H. Nugroho, Nyoman Suci, T. Kristina, Maria Suryani","doi":"10.13181/mji.oa.236774","DOIUrl":null,"url":null,"abstract":"BACKGROUND Hyperglycemia and oxidative stress cause phagocytosis dysfunction in patients with diabetes. A combination of lycopene and metformin can reduce oxidative stress and blood glucose. This study aimed to determine the effect of combined lycopene and metformin on phagocytosis function, glycated hemoglobin A1c (HbA1c), nitric oxide (NO), reactive oxygen species (ROS), and advanced glycation end products (AGEs). \nMETHODS A randomized controlled study was conducted in rats at the Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia, from August to September 2022. 30 rats were divided into control (n = 5) and type 2 diabetes mellitus (T2DM) (n = 25) groups. Rats in the T2DM group were induced by a high-fat diet combined with streptozotocin-nicotinamide. The 25 rats were then divided into five subgroups: 1 ml coconut oil (DM), 250 mg/kg metformin in 1 ml coconut oil (DMet), 250 mg/kg metformin + 10 mg/kg lycopene in 1 ml coconut oil (DML-10), 250 mg/kg metformin + 20 mg/kg lycopene in 1 ml coconut oil (DML-20), and 250 mg/kg metformin + 40 mg/kg lycopene in 1 ml coconut oil (DML-40). Treatments were administered daily for 4 weeks. The macrophage phagocytosis index (PI), HbA1c levels, ROS, NO, and AGEs serum were evaluated. \nRESULTS There was a significant difference in the PI, HbA1c, NO, ROS, and AGEs between the groups (p<0.001). The DML-20 and DML-40 groups had significantly increased PI and decreased NO, ROS, and AGEs levels than metformin alone (p<0.05). \nCONCLUSIONS Lycopene combined with metformin could improve phagocytosis function, glycemic control, and oxidative stress.","PeriodicalId":18302,"journal":{"name":"Medical Journal of Indonesia","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of lycopene and metformin combination on phagocytosis, glycemic control, and oxidative stress in rats with type 2 diabetes\",\"authors\":\"Medina Sianturi, N. Susilaningsih, H. Nugroho, Nyoman Suci, T. Kristina, Maria Suryani\",\"doi\":\"10.13181/mji.oa.236774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND Hyperglycemia and oxidative stress cause phagocytosis dysfunction in patients with diabetes. A combination of lycopene and metformin can reduce oxidative stress and blood glucose. This study aimed to determine the effect of combined lycopene and metformin on phagocytosis function, glycated hemoglobin A1c (HbA1c), nitric oxide (NO), reactive oxygen species (ROS), and advanced glycation end products (AGEs). \\nMETHODS A randomized controlled study was conducted in rats at the Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia, from August to September 2022. 30 rats were divided into control (n = 5) and type 2 diabetes mellitus (T2DM) (n = 25) groups. Rats in the T2DM group were induced by a high-fat diet combined with streptozotocin-nicotinamide. The 25 rats were then divided into five subgroups: 1 ml coconut oil (DM), 250 mg/kg metformin in 1 ml coconut oil (DMet), 250 mg/kg metformin + 10 mg/kg lycopene in 1 ml coconut oil (DML-10), 250 mg/kg metformin + 20 mg/kg lycopene in 1 ml coconut oil (DML-20), and 250 mg/kg metformin + 40 mg/kg lycopene in 1 ml coconut oil (DML-40). Treatments were administered daily for 4 weeks. The macrophage phagocytosis index (PI), HbA1c levels, ROS, NO, and AGEs serum were evaluated. \\nRESULTS There was a significant difference in the PI, HbA1c, NO, ROS, and AGEs between the groups (p<0.001). The DML-20 and DML-40 groups had significantly increased PI and decreased NO, ROS, and AGEs levels than metformin alone (p<0.05). \\nCONCLUSIONS Lycopene combined with metformin could improve phagocytosis function, glycemic control, and oxidative stress.\",\"PeriodicalId\":18302,\"journal\":{\"name\":\"Medical Journal of Indonesia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Journal of Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13181/mji.oa.236774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, GENERAL & INTERNAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Journal of Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13181/mji.oa.236774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
Effect of lycopene and metformin combination on phagocytosis, glycemic control, and oxidative stress in rats with type 2 diabetes
BACKGROUND Hyperglycemia and oxidative stress cause phagocytosis dysfunction in patients with diabetes. A combination of lycopene and metformin can reduce oxidative stress and blood glucose. This study aimed to determine the effect of combined lycopene and metformin on phagocytosis function, glycated hemoglobin A1c (HbA1c), nitric oxide (NO), reactive oxygen species (ROS), and advanced glycation end products (AGEs).
METHODS A randomized controlled study was conducted in rats at the Center for Food and Nutrition Studies, Universitas Gadjah Mada, Yogyakarta, Indonesia, from August to September 2022. 30 rats were divided into control (n = 5) and type 2 diabetes mellitus (T2DM) (n = 25) groups. Rats in the T2DM group were induced by a high-fat diet combined with streptozotocin-nicotinamide. The 25 rats were then divided into five subgroups: 1 ml coconut oil (DM), 250 mg/kg metformin in 1 ml coconut oil (DMet), 250 mg/kg metformin + 10 mg/kg lycopene in 1 ml coconut oil (DML-10), 250 mg/kg metformin + 20 mg/kg lycopene in 1 ml coconut oil (DML-20), and 250 mg/kg metformin + 40 mg/kg lycopene in 1 ml coconut oil (DML-40). Treatments were administered daily for 4 weeks. The macrophage phagocytosis index (PI), HbA1c levels, ROS, NO, and AGEs serum were evaluated.
RESULTS There was a significant difference in the PI, HbA1c, NO, ROS, and AGEs between the groups (p<0.001). The DML-20 and DML-40 groups had significantly increased PI and decreased NO, ROS, and AGEs levels than metformin alone (p<0.05).
CONCLUSIONS Lycopene combined with metformin could improve phagocytosis function, glycemic control, and oxidative stress.
期刊介绍:
Medical Journal of Indonesia is a peer-reviewed and open access journal that focuses on promoting medical sciences generated from basic sciences, clinical, and community or public health research to integrate researches in all aspects of human health. This journal publishes original articles, reviews, and also interesting case reports. Brief communications containing short features of medicine, latest developments in diagnostic procedures, treatment, or other health issues that is important for the development of health care system are also acceptable. Letters and commentaries of our published articles are welcome.