{"title":"基于图像熵的CFRP感应加热升温速率及温度场研究","authors":"Zhijian Pei, Zhihui Deng, Xinmin Shi, H Zhao","doi":"10.1177/09540083231182062","DOIUrl":null,"url":null,"abstract":"The electromagnetic induction heating technology has the advantages of fast heating speed and cleanness, and can realize the rapid temperature curing of carbon fiber reinforced polymer (CFRP). In order to improve production efficiency and curing quality, a finite element model of induction heating CFRP was established, and the temperature field distribution and heating mechanism during induction heating of CFRP were analyzed. The correctness of the model and conclusion is verified by experiments. On this basis, the influence of current, diameter, frequency and distance on the heating rate is analyzed, and it is found that frequency has the greatest influence on the heating rate. In addition, the mathematical relationship between temperature field uniformity and entropy value is established, which provides a quantitative analysis method for the temperature field uniformity of induction heating CFRP. Through optimization analysis, it is obtained that for the CFRP mentioned in the article, the coil size is selected between 65 mm and 95 mm, and the spacing is between 3.5 mm and 6.5 mm, so that the temperature field has the best uniformity.","PeriodicalId":12932,"journal":{"name":"High Performance Polymers","volume":"35 1","pages":"827 - 838"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the heating rate of induction heating CFRP and temperature field based on image entropy\",\"authors\":\"Zhijian Pei, Zhihui Deng, Xinmin Shi, H Zhao\",\"doi\":\"10.1177/09540083231182062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electromagnetic induction heating technology has the advantages of fast heating speed and cleanness, and can realize the rapid temperature curing of carbon fiber reinforced polymer (CFRP). In order to improve production efficiency and curing quality, a finite element model of induction heating CFRP was established, and the temperature field distribution and heating mechanism during induction heating of CFRP were analyzed. The correctness of the model and conclusion is verified by experiments. On this basis, the influence of current, diameter, frequency and distance on the heating rate is analyzed, and it is found that frequency has the greatest influence on the heating rate. In addition, the mathematical relationship between temperature field uniformity and entropy value is established, which provides a quantitative analysis method for the temperature field uniformity of induction heating CFRP. Through optimization analysis, it is obtained that for the CFRP mentioned in the article, the coil size is selected between 65 mm and 95 mm, and the spacing is between 3.5 mm and 6.5 mm, so that the temperature field has the best uniformity.\",\"PeriodicalId\":12932,\"journal\":{\"name\":\"High Performance Polymers\",\"volume\":\"35 1\",\"pages\":\"827 - 838\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09540083231182062\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09540083231182062","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Research on the heating rate of induction heating CFRP and temperature field based on image entropy
The electromagnetic induction heating technology has the advantages of fast heating speed and cleanness, and can realize the rapid temperature curing of carbon fiber reinforced polymer (CFRP). In order to improve production efficiency and curing quality, a finite element model of induction heating CFRP was established, and the temperature field distribution and heating mechanism during induction heating of CFRP were analyzed. The correctness of the model and conclusion is verified by experiments. On this basis, the influence of current, diameter, frequency and distance on the heating rate is analyzed, and it is found that frequency has the greatest influence on the heating rate. In addition, the mathematical relationship between temperature field uniformity and entropy value is established, which provides a quantitative analysis method for the temperature field uniformity of induction heating CFRP. Through optimization analysis, it is obtained that for the CFRP mentioned in the article, the coil size is selected between 65 mm and 95 mm, and the spacing is between 3.5 mm and 6.5 mm, so that the temperature field has the best uniformity.
期刊介绍:
Health Services Management Research (HSMR) is an authoritative international peer-reviewed journal which publishes theoretically and empirically rigorous research on questions of enduring interest to health-care organizations and systems throughout the world. Examining the real issues confronting health services management, it provides an independent view and cutting edge evidence-based research to guide policy-making and management decision-making. HSMR aims to be a forum serving an international community of academics and researchers on the one hand and healthcare managers, executives, policymakers and clinicians and all health professionals on the other. HSMR wants to make a substantial contribution to both research and managerial practice, with particular emphasis placed on publishing studies which offer actionable findings and on promoting knowledge mobilisation toward theoretical advances. All papers are expected to be of interest and relevance to an international audience. HSMR aims at enhance communication between academics and practitioners concerned with developing, implementing, and analysing health management issues, reforms and innovations primarily in European health systems and in all countries with developed health systems. Papers can report research undertaken in a single country, but they need to locate and explain their findings in an international context, and in international literature.