{"title":"利用近红外光谱特征值分布监测木材在多次拉伸加载-卸载循环中的物理状态","authors":"T. Fujimoto","doi":"10.1177/09670335221130469","DOIUrl":null,"url":null,"abstract":"Wood is a typical viscoelastic material that shows a clear mechanical hysteresis loop during cyclic loading, which implies the irreversibility of the process and is important for the processing and long-term utility of wood. Changes in the physical state of wood were examined during multiple tensile load-unload cycles based on the eigenvalue distribution of the near-infrared spectra. The set of eigenvalues H = {λ1, λ2, …, λ n }, calculated from the spectral matrix successively acquired during the cycling test, was treated as the Hamiltonian, which represents the energy eigenstate of the wood. Using statistical physics and random matrix theory, the variation in the physical state of wood was discussed from both macroscopic and microscopic perspectives. Unlike traditional methods, the energy state of wood can be followed in real time during cyclic loading; in other words, the Helmholtz free energy and Shannon entropy varied with load changes. The commutator, defined by the density and diagonal matrix of H, could be used to quantitatively evaluate the irreversible changes in wood during the cyclic processes. The proposed method is independent of a specific coordinate system, and can therefore be applied using a wide variety of chemical information other than that obtained from the near-infrared spectra.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the physical state of wood during multiple tensile load-unload cycles by the eigenvalue distribution of near infrared spectra\",\"authors\":\"T. Fujimoto\",\"doi\":\"10.1177/09670335221130469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wood is a typical viscoelastic material that shows a clear mechanical hysteresis loop during cyclic loading, which implies the irreversibility of the process and is important for the processing and long-term utility of wood. Changes in the physical state of wood were examined during multiple tensile load-unload cycles based on the eigenvalue distribution of the near-infrared spectra. The set of eigenvalues H = {λ1, λ2, …, λ n }, calculated from the spectral matrix successively acquired during the cycling test, was treated as the Hamiltonian, which represents the energy eigenstate of the wood. Using statistical physics and random matrix theory, the variation in the physical state of wood was discussed from both macroscopic and microscopic perspectives. Unlike traditional methods, the energy state of wood can be followed in real time during cyclic loading; in other words, the Helmholtz free energy and Shannon entropy varied with load changes. The commutator, defined by the density and diagonal matrix of H, could be used to quantitatively evaluate the irreversible changes in wood during the cyclic processes. The proposed method is independent of a specific coordinate system, and can therefore be applied using a wide variety of chemical information other than that obtained from the near-infrared spectra.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/09670335221130469\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/09670335221130469","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Monitoring the physical state of wood during multiple tensile load-unload cycles by the eigenvalue distribution of near infrared spectra
Wood is a typical viscoelastic material that shows a clear mechanical hysteresis loop during cyclic loading, which implies the irreversibility of the process and is important for the processing and long-term utility of wood. Changes in the physical state of wood were examined during multiple tensile load-unload cycles based on the eigenvalue distribution of the near-infrared spectra. The set of eigenvalues H = {λ1, λ2, …, λ n }, calculated from the spectral matrix successively acquired during the cycling test, was treated as the Hamiltonian, which represents the energy eigenstate of the wood. Using statistical physics and random matrix theory, the variation in the physical state of wood was discussed from both macroscopic and microscopic perspectives. Unlike traditional methods, the energy state of wood can be followed in real time during cyclic loading; in other words, the Helmholtz free energy and Shannon entropy varied with load changes. The commutator, defined by the density and diagonal matrix of H, could be used to quantitatively evaluate the irreversible changes in wood during the cyclic processes. The proposed method is independent of a specific coordinate system, and can therefore be applied using a wide variety of chemical information other than that obtained from the near-infrared spectra.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.