{"title":"基于热点的多尺度冲击爆轰过渡模拟(A)——含能材料化学动力学的提取-","authors":"Yoocheon Kim, Jai-ick Yoh","doi":"10.15231/JKSC.2018.23.4.023","DOIUrl":null,"url":null,"abstract":"Empirical and phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson-Tang-Forest, have been effective in predicting shock initiation and detonation characteristics of various energetic substances. These models utilize the compression and pressure properties of the reacting mixture for quantifying their reaction rates. However, it has long been known that shock initiation of detonation is controlled by local reaction sites called ‘hot spots.’ In this study, a hot spot model based on the temperaturedependent Arrhenius reaction rate is developed. The complex reaction process of target explosive is addressed by conducting the Differential Scanning Calorimetry (DSC) while the rate of reaction is determined using the Friedman isoconversional method.","PeriodicalId":42247,"journal":{"name":"Journal of the Korean Society of Combustion","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Hot Spot Based Shock to Detonation Transition Simulation using Multi-Scale Approach Part A - Extraction of Chemical Kinetics of Energetic Material -\",\"authors\":\"Yoocheon Kim, Jai-ick Yoh\",\"doi\":\"10.15231/JKSC.2018.23.4.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Empirical and phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson-Tang-Forest, have been effective in predicting shock initiation and detonation characteristics of various energetic substances. These models utilize the compression and pressure properties of the reacting mixture for quantifying their reaction rates. However, it has long been known that shock initiation of detonation is controlled by local reaction sites called ‘hot spots.’ In this study, a hot spot model based on the temperaturedependent Arrhenius reaction rate is developed. The complex reaction process of target explosive is addressed by conducting the Differential Scanning Calorimetry (DSC) while the rate of reaction is determined using the Friedman isoconversional method.\",\"PeriodicalId\":42247,\"journal\":{\"name\":\"Journal of the Korean Society of Combustion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15231/JKSC.2018.23.4.023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15231/JKSC.2018.23.4.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2
摘要
经验和现象学流体动力学反应流模型,如Ignition and Growth和Johnson-Tang-Forest,已经有效地预测了各种含能物质的激波起爆特性。这些模型利用反应混合物的压缩和压力特性来量化它们的反应速率。然而,人们早就知道,爆炸的冲击起爆是由称为“热点”的局部反应部位控制的。在这项研究中,建立了一个基于温度依赖的阿伦尼乌斯反应速率的热点模型。用差示扫描量热法(DSC)分析了目标炸药的复杂反应过程,用弗里德曼等转换法测定了反应速率。
A Hot Spot Based Shock to Detonation Transition Simulation using Multi-Scale Approach Part A - Extraction of Chemical Kinetics of Energetic Material -
Empirical and phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson-Tang-Forest, have been effective in predicting shock initiation and detonation characteristics of various energetic substances. These models utilize the compression and pressure properties of the reacting mixture for quantifying their reaction rates. However, it has long been known that shock initiation of detonation is controlled by local reaction sites called ‘hot spots.’ In this study, a hot spot model based on the temperaturedependent Arrhenius reaction rate is developed. The complex reaction process of target explosive is addressed by conducting the Differential Scanning Calorimetry (DSC) while the rate of reaction is determined using the Friedman isoconversional method.