具有温度相关系数的平面磁流体动力学方程的全局大解

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Yachun Li, Zhaoyang Shang
{"title":"具有温度相关系数的平面磁流体动力学方程的全局大解","authors":"Yachun Li, Zhaoyang Shang","doi":"10.1142/s0219891619500164","DOIUrl":null,"url":null,"abstract":"We consider the planar compressible magnetohydrodynamics (MHD) system for a viscous and heat-conducting ideal polytropic gas, when the viscosity, magnetic diffusion and heat conductivity depend on the specific volume [Formula: see text] and the temperature [Formula: see text]. For technical reasons, the viscosity coefficients, magnetic diffusion and heat conductivity are assumed to be proportional to [Formula: see text] where [Formula: see text] is a non-degenerate and smooth function satisfying some natural conditions. We prove the existence and uniqueness of the global-in-time classical solution to the initial-boundary value problem when general large initial data are prescribed and the exponent [Formula: see text] is sufficiently small. A similar result is also established for planar Hall-MHD equations.","PeriodicalId":50182,"journal":{"name":"Journal of Hyperbolic Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219891619500164","citationCount":"6","resultStr":"{\"title\":\"Global large solutions to planar magnetohydrodynamics equations with temperature-dependent coefficients\",\"authors\":\"Yachun Li, Zhaoyang Shang\",\"doi\":\"10.1142/s0219891619500164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the planar compressible magnetohydrodynamics (MHD) system for a viscous and heat-conducting ideal polytropic gas, when the viscosity, magnetic diffusion and heat conductivity depend on the specific volume [Formula: see text] and the temperature [Formula: see text]. For technical reasons, the viscosity coefficients, magnetic diffusion and heat conductivity are assumed to be proportional to [Formula: see text] where [Formula: see text] is a non-degenerate and smooth function satisfying some natural conditions. We prove the existence and uniqueness of the global-in-time classical solution to the initial-boundary value problem when general large initial data are prescribed and the exponent [Formula: see text] is sufficiently small. A similar result is also established for planar Hall-MHD equations.\",\"PeriodicalId\":50182,\"journal\":{\"name\":\"Journal of Hyperbolic Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2019-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219891619500164\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hyperbolic Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219891619500164\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hyperbolic Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219891619500164","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6

摘要

当粘性、磁扩散和热导率取决于比体积[公式:见正文]和温度[公式:看正文]时,我们考虑粘性和导热理想多变气体的平面可压缩磁流体动力学(MHD)系统。由于技术原因,假设粘度系数、磁扩散和热导率与[公式:见正文]成比例,其中[公式:参见正文]是满足某些自然条件的非退化光滑函数。当给定一般的大初始数据并且指数[公式:见正文]足够小时,我们证明了初边值问题的全局实时经典解的存在性和唯一性。对于平面霍尔磁流体动力学方程也建立了类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global large solutions to planar magnetohydrodynamics equations with temperature-dependent coefficients
We consider the planar compressible magnetohydrodynamics (MHD) system for a viscous and heat-conducting ideal polytropic gas, when the viscosity, magnetic diffusion and heat conductivity depend on the specific volume [Formula: see text] and the temperature [Formula: see text]. For technical reasons, the viscosity coefficients, magnetic diffusion and heat conductivity are assumed to be proportional to [Formula: see text] where [Formula: see text] is a non-degenerate and smooth function satisfying some natural conditions. We prove the existence and uniqueness of the global-in-time classical solution to the initial-boundary value problem when general large initial data are prescribed and the exponent [Formula: see text] is sufficiently small. A similar result is also established for planar Hall-MHD equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hyperbolic Differential Equations
Journal of Hyperbolic Differential Equations 数学-物理:数学物理
CiteScore
1.10
自引率
0.00%
发文量
15
审稿时长
24 months
期刊介绍: This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in: Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions. Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc. Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations. Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc. General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations. Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信