{"title":"一类具有奇异梯度低阶项的退化问题解的存在性与正则性","authors":"H. Khelifi","doi":"10.2478/mjpaa-2022-0022","DOIUrl":null,"url":null,"abstract":"Abstract We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is { -div(b(x)| ∇u |p-2∇u(1+| u |)γ)+| ∇u |p| u |θ=f,in Ω,u=0,on ∂Ω, \\left\\{ {\\matrix{ { - div\\left( {b\\left( x \\right){{{{\\left| {\\nabla u} \\right|}^{p - 2}}\\nabla u} \\over {\\left( {1 + \\left| u \\right|} \\right)\\gamma }}} \\right) + {{{{\\left| {\\nabla u} \\right|}^p}} \\over {{{\\left| u \\right|}^\\theta }}} = f,} \\hfill & {in\\,\\Omega ,} \\hfill \\cr {u = 0,} \\hfill & {on\\,\\partial \\Omega ,} \\hfill \\cr } } \\right. swhere Ω is a bounded open subset in ℝN, 1 ≤ θ < 2, p > 2 and γ > 0. We will show that, even if the lower order term is singular, we obtain existence and regularity of positive solution, under various assumptions on the summability of the source f.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"8 1","pages":"310 - 327"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Existence and Regularity for Solution to a Degenerate Problem with Singular Gradient Lower Order Term\",\"authors\":\"H. Khelifi\",\"doi\":\"10.2478/mjpaa-2022-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is { -div(b(x)| ∇u |p-2∇u(1+| u |)γ)+| ∇u |p| u |θ=f,in Ω,u=0,on ∂Ω, \\\\left\\\\{ {\\\\matrix{ { - div\\\\left( {b\\\\left( x \\\\right){{{{\\\\left| {\\\\nabla u} \\\\right|}^{p - 2}}\\\\nabla u} \\\\over {\\\\left( {1 + \\\\left| u \\\\right|} \\\\right)\\\\gamma }}} \\\\right) + {{{{\\\\left| {\\\\nabla u} \\\\right|}^p}} \\\\over {{{\\\\left| u \\\\right|}^\\\\theta }}} = f,} \\\\hfill & {in\\\\,\\\\Omega ,} \\\\hfill \\\\cr {u = 0,} \\\\hfill & {on\\\\,\\\\partial \\\\Omega ,} \\\\hfill \\\\cr } } \\\\right. swhere Ω is a bounded open subset in ℝN, 1 ≤ θ < 2, p > 2 and γ > 0. We will show that, even if the lower order term is singular, we obtain existence and regularity of positive solution, under various assumptions on the summability of the source f.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"8 1\",\"pages\":\"310 - 327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2022-0022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2022-0022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4
摘要
研究了一类具有退化矫顽力和奇异梯度低阶项的非线性椭圆方程的存在性和正则性结果。模型问题是{div (b (x) | |∇u p 2∇u (1 u + | |)γ)+ |∇u p | | |θ= f,在Ω,u = 0,在∂Ω,左\ \{{\矩阵{{- div \离开({b \离开(x \右){{{{\左|{\微分算符u} \右|}^ {p - 2}} \微分算符u} \ /{\离开({1 + \左| u \ |} \) \伽马}}}\右)+{{{{\左|{\微分算符u} \右|}^ p}} \ /{{{\左| u \右|}^ \θ}}}= f,} \ hfill &{\ω,\}\ hfill \ cr {u = 0} \ hfill &{\、ω\部分\}\ hfill \ cr}} \。其中Ω是一个有界开子集,1≤θ < 2, p > 2和γ > 0。我们将证明,即使低阶项是奇异项,在各种关于源f可和性的假设下,我们得到了正解的存在性和正则性。
Existence and Regularity for Solution to a Degenerate Problem with Singular Gradient Lower Order Term
Abstract We study the existence and regularity results for non-linear elliptic equation with degenerate coercivity and a singular gradient lower order term. The model problems is { -div(b(x)| ∇u |p-2∇u(1+| u |)γ)+| ∇u |p| u |θ=f,in Ω,u=0,on ∂Ω, \left\{ {\matrix{ { - div\left( {b\left( x \right){{{{\left| {\nabla u} \right|}^{p - 2}}\nabla u} \over {\left( {1 + \left| u \right|} \right)\gamma }}} \right) + {{{{\left| {\nabla u} \right|}^p}} \over {{{\left| u \right|}^\theta }}} = f,} \hfill & {in\,\Omega ,} \hfill \cr {u = 0,} \hfill & {on\,\partial \Omega ,} \hfill \cr } } \right. swhere Ω is a bounded open subset in ℝN, 1 ≤ θ < 2, p > 2 and γ > 0. We will show that, even if the lower order term is singular, we obtain existence and regularity of positive solution, under various assumptions on the summability of the source f.